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Abstract:A class of elasto-plastic models for small deformations coupled with damage effects is considered. The
models are derived on the basis of energy equivalence principles and are characterized by a function of damage
related to the yield function. Properties of the models are illustrated by uniaxial tensile loadings.
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1 Introduction

Continuum damage models on the basis of effective
strain and effective stress combined with the hypothe-
sis (principle) of energy equivalence have been intro-
duced by Cordebois and Sidoroff [4]. In this work, the
principle of energy equivalence was discussed for the
case of pure elastic mechanical behavior only. Inter-
esting extensions to elastic-plastic materials were then
proposed by Chow and Lu [3] as well as Saanouni,
Forster and Hatira [7]. The concept of energy equiv-
alence relies upon the assumption that there exists an
undamaged fictitious material, whose response func-
tions serve to establish the corresponding functions
for the real damaged material by stetting in relation
some energy quantities. Thereby, so-called effective
strain and stress variables have to be used for the un-
damaged fictitious material. Only isotropic hardening
is considered in Chow and Lu [3] and an equivalence
for the incremental plastic work is postulated. Ac-
cording to the assumptions made, the yield function
for the real material is known and the effective accu-
mulated plastic strain is gained by the principle. The
latter is used to formulate the isotropic hardening rule
for the real material. Both, isotropic and kinematic
hardening are assumed to apply in Saanouni, Forster
and Hatira [7]. Equivalence is defined for the free en-
ergy functions and the dissipation potentials, respec-
tively. This way, the evolution equations governing
the hardening response are obtained by making use of
the generalized normality rule.

In the present paper, we are concerned with
elasto-plasticity coupled with damage. We assume
the yield function for the real material to be unknown
and postulate an equivalence for the material func-
tions governing the plastic and the hardening powers.

As a result, we obtain for the real material the yield
function and the evolution equations for the hardening
variables. In order to explain here ideas as simple as
possible we restrict the presentations only to isotropy
and uniaxial loadings. Also, only isotropic harden-
ing and isothermal deformations are assumed to ap-
ply. Some of the concepts addressed here have been
developed previously in [6], but some arguments there
are not formulated clearly, or even they are incorrect,
so that the present paper offers a rigorous motivation
for these concepts.

2 Underlying Elasto-Plasticity
Model

When no damage effects are present, the material re-
sponse is assumed to be described by the following
system of constitutive functions:

ε = εe + εp , (1)

ψ = ψ̃(εe, r) = ψe + ψis , (2)

ψe = ψ̃e(εe) =
1

2
Eε2

e , (3)

ψis = ψ̃is(r) =
1

2
γr2 , (4)

σ =
∂ψ̃e

∂εe
= Eεe , (5)

R :=
∂ψ̃is

∂r
= γr , (6)

f = f̃(σ, R) = |σ| − R : yield function , (7)

f̃(σ, R) = k0 : yield condition , (8)
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ε̇p = p̃(Λ, σ, R) = Λ
∂f̃

∂σ
= Λ

σ

|σ|
, (9)

ṡ := |ε̇p| = Λ , Λ ≥ 0 , (10)

ṙ = ˜̺(Λ, R) = (1 − βR)Λ ≡ (1 − βR)ṡ , (11)

wp = w̃p(Λ, σ, R) = σp̃(Λ, σ, R) = Λσ
∂f̃

∂σ
, (12)

wis = w̃is(Λ, R) = R ˜̺(Λ, R) = R(1 − βR)Λ ,
(13)

σε̇p − ψ̇is ≥ 0 . (14)

In these equations,ε is the strain,σ is the stress,
ψ denotes the free energy andE, β, γ, k0 are material
parameters. Isotropic hardening is modelled by the
internal strainr, which is conjugate to the stressR.
Latter reflects isotropic hardening effects in the ma-
terial behavior. Evolution equations like that in (11)
have been intensively investigated by Chaboche (see
e.g. [1, 2]). The factorΛ has to be determined from the
so-called consistency condition. In Equations (12),
(13),wp andwis denote the plastic power and the rate
of energy stored in the material due to isotropic hard-
ening and can be considered to be given by constitu-
tive functionsw̃p(·) andw̃is(·), respectively. Finally,
Equation (14) represents the so-called dissipation in-
equality, which can be proved to be satisfied for every
admissible process.

3 Elasto-Plasticity Coupled With
Damage

Let D ∈ [0, 1) denote the damage variable. The set of
constitutive functions is supposed to be extended by
D so that we have:

ε = εe + εp , (15)

ψ = ψ̄(εe, r, D) = ψe + ψis , (16)

ψe = ψ̄e(εe, D) , (17)

ψis = ψ̄is(r, D) , (18)

σ =
∂ψ̄e(εe, D)

∂εe
, (19)

R :=
∂ψ̄is(r, D)

∂r
, (20)

f = f̄(σ, R, D) , (21)

f̄(σ, R, D) = k0 : yield condition , (22)

ε̇p = p̄(Λ, σ, R, D) = Λ
∂f̄(σ, R, D)

∂σ
, (23)

ṡ := |ε̇p| = Λ

∣

∣

∣

∣

∂f̄

∂σ

∣

∣

∣

∣

, (24)

ṙ = ¯̺(Λ, R, D) , (25)

wp = w̄p(Λ, σ, R, D) = σp̄(Λ, σ, R, D)

= Λσ
∂f̄(σ, R, D)

∂σ
, (26)

wis = w̄is(Λ, R, D) = R ¯̺(Λ, R, D) , (27)

Ω :=
∂ψ̄(εe, r, D)

∂D
, (28)

D := σε̇p − Rṙ − ΩḊ ≥ 0 . (29)

A normality rule is assumed to hold in (23), but
otherwise the yield function is not specified further.
The next step is to determine the constitutive functions
ψ̄e, ψ̄is, f̄ and ¯̺ from those in Section 2 by using an
energy equivalence principle.

4 Proposed Energy Equivalence
Principle

Following Cordebois and Sidoroff [4], Chow and
Lu [4] and Saanouni, Forster and Hatira [7], we intro-
duce effective variablesσef , εef

e , Ref , ref , Λef and
determine the constitutive equations for the real mate-
rial as follows.

First we introduce damage functionsm = m(D),
h = h(D) and define

σef :=
σ

m
, (30)

εef
e := hεe , (31)

Ref :=
R

m
, (32)

ref := hr . (33)

The functionm is considered to be given. In particular
we assume

m = (1 − D)q/2 , (34)

with q being a nonnegative material parameter. Then,
we determineh andψ̄e, ψ̄is by postulating

ψ̄e(εe, D) = ψ̃e(εe) , (35)

ψ̄is(r, D) = ψ̃is(r) , (36)

σef =
∂ψ̃e(ε

ef
e )

∂εef
e

, (37)

Ref =
∂ψ̃is(r

ef )

∂ref
. (38)

From these, as well as Equations (19), (20), it follows
that

h(D) = m(D) = (1 − D)q/2 (39)
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and

ψ̄e(εe, D) =
1

2
(1 − D)qEε2

e , (40)

ψ̄is(r, D) =
1

2
(1 − D)qγr2 . (41)

In order to obtain the hardening response, we assume
the relation

Λef := gχΛ , (42)

and postulate the equivalence for the power functions

w̄p(Λ, σ, R, D) =
1

χ
w̃p(Λ

ef , σef , Ref ) , (43)

w̄is(Λ, σ, R, D) =
1

χ
w̃is(Λ

ef , σef , Ref ) , (44)

whereg, χ are state functions. The functionχ will be
relevant when modelling viscoplastic material prop-
erties with static recovery terms. However, for plas-
ticity, we deal with here,χ needs not to be specified
any further, so that, without loss of generality, we set
χ ≡ 1 in what follows. In the present paper we as-
sumeg to depend only on the damage variable. Espe-
cially, we set

g = g(D) = (1 − D)q/2−n , (45)

wheren is a material parameter. From (43), it follows
that

Λσ
∂f̄(σ, R, D)

∂σ
= Λefσef ∂f̃(σef , Ref )

∂σef
(46)

or

∂f̄(σ, R, D)

∂σ
=

g

m

∂f̃(σef , Ref )

∂σef
, (47)

which posses the solution

f̄(σ, R, D) = g(D)f̃(σef , Ref )

= g(D)(|σef | − Ref ) . (48)

Similarly, we get from (44)

R ¯̺(Λ, R, D) = Ref (1 − βRef )Λef (49)

or

¯̺(Λ, R, D) =

(

1 − β
R

m

)

Λef

m
, (50)

and hence

ṙ = ¯̺(Λ, R, D) =

(

1 − β
R

m

)

Λg

m
=

(

1 − β
R

m

)

ṡ

(51)

with

ṡ =
Λg

m
and

∣

∣

∣

∣

∣

∂f̃

∂σef

∣

∣

∣

∣

∣

= 1 , (52)

in view of (7). Thus, the yield function and the
evolution law for isotropic hardening are established,
which completes the system of equations governing
the model response.

It remains only to prove the dissipation inequal-
ity (29). It is straightforward to show thatσε̇p−Rṙ ≥

0, so thatD ≥ 0 if −ΩḊ ≥ 0. This in turn will be
true if Ḋ ≥ 0, since

−Ω =
q

2
(1 − D)q−1(Eε2

e + γr2) ≥ 0 . (53)

As a simple possibility we chose

Ḋ = α
(−Ω)p

(1 − D)k
ṡ , (54)

whereα, p, k are material parameters. Equation (54)
goes back to Lemaitre.

This way, a class of elasto-plasticity models cou-
pled with damage have been got, which are character-
ized by the damage functiong(D).

5 Uniaxial Tensile Loadings
For uniaxial tensile loading we haveσ/|σ| = 1,
ṡ = ε̇p, and therefore the set of constitutive equations
reduces to

ε = εe + εp , (55)

σ = (1 − D)qEεe , (56)

σ = R + (1 − D)nk0 , (57)

R = (1 − D)qγr , (58)

ṙ =

(

1 − β
R

(1 − D)q/2

)

ε̇p , (59)

together with Equations (53), (54).ε-σ-responses pre-
dicted by these equations are illustrated in Figures 1–
8, for the material parameters given in Table 1. From
Equations (55)–(59), one can conclude that asD → 1,
the elastic strainεe remains bounded if and only if
n ≥ q. (For more details see Grammenoudis and
Tsakmakis [5].) Consequently, if one assumes that
for metallic materialsεe should remain bounded as
D → 1, thenn = q has to hold for such materials.

From Figures 1–8 can be recognized that for the
range of material parameters considered, and that for
n = q = 1, the form of theε-σ-graphs remains con-
cave independent of the evolution law forD. How-
ever, if n = q 6= 1, then the damage law effects the
form of theε-σ-graphs, which are not more necessar-
ily concave.
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E[MPa] k0[MPa] γ[MPa] β[MPa]

200000 200 30000 0.01

Table 1: Material parameter used in(55)–(59)
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Figure 1: ε-σ-graphs corresponding to the material
parametersn = q = 4, α = 1, k = 9, p ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15}.
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Figure 2: ε-σ-graphs corresponding to the material
parametersn = q = 4, α = 1, k = 20, p ∈
{1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
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Figure 3: ε-σ-graphs corresponding to the material
parametersn = q = 1, α = 50, k = 9, p ∈ {2, 3, 4}.
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Figure 4: ε-σ-graphs corresponding to the material
parametersn = q = 1, α = 50, k = 20, p ∈
{1, 2, 3, 4, 5, 6}.
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Figure 5: ε-σ-graphs corresponding to the material
parametersn = q = 1, α = 1, k = 9, p ∈
{1, 2, 3, 4, 5}.
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Figure 6: ε-σ-graphs corresponding to the material
parametersn = q = 1, α = 1, k = 20, p ∈
{1, 2, 3, 4, 5}.
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Figure 7: ε-σ-graphs corresponding to the material
parametersn = q = 4, α = 50, k = 9, p ∈
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
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Figure 8: ε-σ-graphs corresponding to the material
parametersn = q = 4, α = 50, k = 20, p ∈
{1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
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