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Abstract: This paper deals with a singular perturbation of the stationary Navier-Stokes system. Thereby the term
ε2∆p is added to the continuity equation, whereε is small parameter. For sufficiently regular and small data,
existence of a unique solution is proved. This solution converges to the corresponding (unique) solution of the
Navier-Stokes problem inH5/2−δ for the velocity parts and inH3/2−δ for the pressure parts, respectively.
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1 Introduction

In [1] a singular perturbation of the Stokes problem
was introduced in order to obtain stable numerical
methods. The equation of continuity,div v = 0,
is substituted by the equationdiv v − ε2∆p = 0,
which leads to a strongly elliptic system of second or-
der for both, the velocity vectorv and the pressurep,
and thus, a boundary condition has to be added for the
pressure, too. Finally this ends up with the problem

−∆vε +∇pε = f ′,
−ε2∆pε + div vε = f4

}
in Ω,

(Sε)
vε = g′,

∂npε = g4

}
on∂Ω,

Here Ω ⊂ R3 is a bounded domain with bound-
ary ∂Ω of classC2 at least,f = (f1, . . . , f4) and
g = (g1, . . . , g4) are given vector fields, whilevε =
(vε

1, v
ε
2, v

ε
3) andpε are the quantities to be found. The

Stokes problem (S0) appears formally if we setε = 0
and omit the Neumann condition for the pressure part,
and of course, estimates for the differencesuε − u0

are needed, asε ↘ 0. Contributions to numerical
results using this problem were developed further in
[9, 8, 11], e.g., while in [3] the problem (Sε) was used
to show the existence of weak solutions to problems
with shear dependent viscosities. In the papers cited
abovef4 = 0 andg = 0 was prescribed, then energy
methods were used to estimate the differencesvε−v0,

pε − p0, which leads to convergence inH1(Ω) and
L2(Ω), respectively, asε ↘ 0.

In [7], the approach of [8, 9] was exploited to ob-
tain estimates in Sobolev spacesH l

κ(Ω, ε) depending
on the small parameterε. The indexκ is related to
the part of the norms remaining stable asε ↘ 0. With
those estimates it is possible to show that

‖vε−v0;H5/2−δ(Ω)‖+‖pε−p0;H3/2−δ(Ω)‖ = O(εδ),

asε ↘ 0,(see Theorem 2 below), whereδ ∈ (0, 3/2)
can be arbitrarily close to the endpoints of the inter-
val. From the problem setting it is clear that this is
the optimum with respect to the regularity properties.
By constructing boundary layers, it was also shown in
[7], that the result is optimal with respect to the order
of convergence asε ↘ 0. Here we dwell upon the
nonlinear singular perturbed system

−∆vε +∇pε + N(vε, vε) = f ′,
−ε2∆pε + div vε = f4

}
in Ω,

(NSε)
vε = g′,

∂npε = g4

}
on∂Ω,

with either N(v, w) = (v · ∇)w or N(v, w) =
((v · ∇)w + 2−1(div v)w. If ε = 0 and the Neumann
condition is cancelled, we obtain the stationary
Navier-Stokes problem

−∆v +∇p + N(v, v) = f ′,
div v = f4

}
in Ω,

(NS0)
v = g′ on∂Ω,
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For f4 = 0 andg = 0 andf ′ ∈ L2(Ω), e.g., it is
well known that existence of weak solutions to (NS0)
can be shown by application of the Leray-Schauder
principle (see, e.g., [10]), obviously then both vari-
ants of the bilinear operatorN coincide. Note that in
(NSε) only the second variant for the bilinear operator
enables to use Schauder’s fix point theorem to prove
existence of weak solutions. Here we obtain estimates
of the same accuracy as for the linear problems but for
small solutions of the nonlinear problems, and we can
use both variants for the nonlinear term, since there is
no difference in the arguments.

The decisive point here is to find anε indepen-
dent bound for the bicontinuity constant which is re-
lated to the nonlinear operatorN in H l

κ(Ω, ε)-spaces
(Lemma 4). For small data, an application of the Ba-
nach contraction principle leads to simultaneous exis-
tence and uniqueness of small strong solutions both to
(NSε) and (NS0) and error estimates for the difference
of the same order as for the linear problems.

2 Results for the linear problems

Before we recall the results for the linear problem, we
introduce some general notations. As already men-
tioned, Ω ⊂ R3 is a bounded domain with closure
Ω, boundary∂Ω, and forx ∈ ∂Ω the exterior unit
normal vector is denoted byn(x), if it exists. For
any t ∈ R, we call [t] the integer part oft, i.e.
[t] = max{j ∈ Z : j ≤ t}, while the number
t+ = (t + |t|)/2 means the positive part oft.

We use the common multi-index terminology:
∂α = ∂α1

∂x1

∂α2

∂x2

∂α3

∂x3
, with α ∈ N3

0. If k ∈ N, then

∇k indicates the collection of all partial derivatives of
orderk. For any function spaceX, we indicate the
norm in X by ‖ · ;X‖. Given l ∈ N, the Sobolev
spaceH l(Ω) consists of allϕ ∈ L2(Ω) with distri-
butional derivatives∂αϕ ∈ L2(Ω), |α| ≤ l, supplied
with the usual norm. Ifs > 0, s /∈ N, then for an
open setG ⊂ Rn, (here we needn = 2 andn = 3)
the Sobolev-Slobodetskii spaceHs(G) coincides with
the set{ϕ ∈ H [s](G) : ‖ϕ;Hs(G)‖ < ∞}, while

‖ϕ;Hs(G)‖2 = ‖v;H [s](G)‖2 +∑
|α|=[s]

∫
G

∫
G

|∂αϕ(x)− ∂αϕ(ξ)|2

|x− ξ|n+2(s−[s])
dξdx.

Furthermore,H−s(G) is the dual space of
◦
H s(G),

here the supscript◦ indicates the closure ofC∞
0 (G)

in Hs(G). ThenHs(∂Ω) is defined, by using local
coordinates and a partition of unity on∂Ω, via the def-
inition of Hs(R2), while H−s(∂Ω) is the dual space
of Hs(∂Ω) (see [4] for details.)

To obtain asymptotically precise estimates for so-
lutionsuε to problem (Sε), the spacesH l(Ω) are sup-
plied with equivalent norms, where the small parame-
ter ε ∈ (0, 1] is included (see [5, 7]). Forκ ≤ l and
ϕ ∈ H l(Ω) we set

‖ϕ;H l
κ(Ω; ε)‖2 = ‖ϕ;Hκ(Ω)‖2 +

l∑
k=0

ε2(k−κ)+‖∇ϕ;L2(Ω)‖2. (1)

Note that the exponents in the powers ofε depend
step-like on orderk of the derivatives. Then for any
differential operator∂α with |α| ≤ l, and k with
κ + k ≤ l, we have

‖∂αϕ;H l−|α|
κ−|α|(Ω; ε)‖

≤ C‖ϕ;H l
κ(Ω; ε)‖, (2)

‖εk∂αϕ;H l−|α|
κ−|α|+k(Ω; ε)‖

≤ C‖ϕ;H l
κ(Ω; ε)‖. (3)

We process the trace spacesH l−1/2(∂Ω) in the

following way. We define‖v;Hl−1/2
κ−1/2(∂Ω; ε)‖ as(

‖v;Hκ−1/2(∂Ω)‖2+ε2(l−κ)‖v;H l−1/2(∂Ω)‖2
)1/2

for κ > 1/2; and ε−κ+1/2
(
‖v;L2(∂Ω)‖2 +

ε2l−1‖v;H l−1/2(∂Ω)‖2
)1/2

for κ < 1/2. The

norms of the trace operators∂h
n : H l

κ(Ω; ε) →
H

l−h−1/2
κ−h−1/2(∂Ω; ε), whereh = 0 andh = 1, can be

bounded independent onε ∈ (0, 1], the converse re-
sult on extensions is also true. To formulate the com-
plete result we also needH l

κ(Ω, ε) with κ > l. In
this case we chooset ∈ N = {1, 2, . . .} such that
t + l ≥ κ > l. We introduce the Helmholtz opera-
tor Lε = 1− ε2∆ with domainD(Lε) = H2(R3), if
Ω = R3 andD(Lε) = {ϕ ∈ H2(Ω) : ϕ = 0 on∂Ω},
if Ω is a proper subset ofR3. Since the spectrum
of Lε is contained in the interval[1,∞), there exists

L−t/2
ε u ∈ H l+t(Ω), if u ∈ H l(Ω) and we set

‖u;H l
κ(Ω, ε)‖ = ‖L−t/2

ε u;H l+t
κ (Ω, ε)‖. (4)

Let ∂Ω be of classC l+2 for some l ∈ N. It is
well known that forf ∈ H l−1(Ω) × H l(Ω), and
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g′ ∈ H l+1/2(∂Ω)3, subject to the compatibility con-
dition ∫

Ω
f4 −

∫
∂Ω

g′ · ndo = 0, (5)

problem (S0) possesses a solutionu0 = (v0, p0) ∈
H l+1(Ω)3 which is unique under the condition thatp0

is mean value free. In [7] the following inequality was
proved for this solution:

‖v0;H l+1
κ+1(Ω; ε)‖+ ‖p0;H l

κ(Ω; ε)‖

≤ C
(
‖f ′;H l−1

κ−1(Ω; ε)‖+ ‖f4;H l
κ(Ω; ε)‖

+‖g′;H l+1/2
κ+1/2(∂Ω; ε)‖

)
, (6)

For solutions to the problem (Sε) the following result
is valid – we recall it only for the caseg4 = 0.

Theorem 1 [7] Let Ω ⊂ R3 be a bounded domain
with ∂Ω of classC l+2, l ∈ N, κ ∈ [0, 3/2), κ ≤ l
and g4 = 0 in (Sε). Then for anyf ∈ H l−1(Ω)4

and g′ ∈ H l+1/2(∂Ω)3 complying with(5) there ex-
ists a solutionuε = (vε, pε) ∈ H l+1(Ω) to problem
(Sε), which is unique under the orthogonality condi-
tion

∫
Ω pε = 0. This solution satisfies the estimate

‖vε;H l+1
κ+1(Ω; ε)‖+ ‖pε;H l+1

κ (Ω; ε)⊥‖

≤ C
(
‖f ′;H l−1

κ−1(Ω; ε)‖+ ‖f4;H l−1
κ (Ω; ε)‖

+‖g′;H l+1/2
κ+1/2(∂Ω; ε)‖

)
, (7)

whereC is a constant depending onκ, ∂Ω and l, but
neither onε ∈ (0, 1] nor on the data(f, g). The sub-
script ⊥ indicates the subspace of mean value free
functions.

To shorten the notations for the following
proofs, we abbreviate the left hand side of (6)
to ‖u0,Dl

κ(Ω, ε)‖ and the right hand side to
‖(f, g′);Rl

κ(Ω, ∂Ω, ε)‖. In a similar manner we de-
note the left hand side of (7) by‖uε;D l

κ(Ω, ε)‖ and
the right hand side by‖(f, g′);Rl

κ(Ω, ∂Ω, ε)‖. The
expression(f, g′) ∈ Rl

κ(Ω, ∂Ω, ε)⊥,Rl
κ(Ω, ∂Ω, ε)⊥

means that (5) is fulfilled, whileu = (v, p) ∈
Dl

κ(Ω, ∂Ω, ε)⊥, D l
κ(Ω, ∂Ω, ε)⊥ indicates again that∫

Ω p = 0.
Depending on the smoothness of the data, we may

apply the estimates (6) or (7) to the differenceuε−u0,
which leads to the following result.

Theorem 2 [7] Let κ ∈ [0, 3/2), f ∈ H l(Ω)4, g′ ∈
H l+3/2(∂Ω) fulfilling (5), moreover we assume

δ ∈ [0, κ], l ∈ N0 with l ≥ max{κ− δ, κ−1}, (8)

The differenceuε−u0 satisfies the following inequal-
ity with a constant independent ofε ∈ (0, 1] and the
data:

‖uε − u0;Dl
κ−δ(Ω; ε)‖ ≤

Cεδ
(
‖f ;H l(Ω)4‖+ ‖g′;H l+3/2‖

)
.

(9)

If, in addition to(8), the requirements

l ≥ κ, f4 ∈ H l+1(Ω) (10)

are met, then the inequality(9) can be strengthened to

‖uε − u0;D l
κ(Ω; ε)‖ ≤ Cε3/2−κ

(
‖f ′;H l(Ω)3‖

+‖f4;H l+1(Ω)‖+ ‖g′;H l+3/2‖
)

.

(11)

3 The Navier-Stokes problem

In order to obtain similar estimates in the case of
the nonlinear problems, at least for small data, we
start with proving the existence of unique strong solu-
tions (under smallness conditions) to the singular per-
turbed nonlinear problem (NSε). This system as well
as the Navier-Stokes system (NS0) have the structure
Su+N(u,u) = f , whereS is a linear operator andN
is a bilinear operator acting between certain function
spaces. There is a well-known technique to solve such
problems, which we recall in the following lemma.
The proof is obvious and uses the Banach contraction
principle.

Lemma 3 Let D , R be Banach spaces,S : D → R
a bounded invertible linear operator with operator
norm ‖S−1 : R → D‖ = CS . Let alsoN :
D × D → R be a bilinear, bicontinuous operator,
i.e., ‖N(u,w);R‖ ≤ CN‖u;D‖ ‖w;D‖. Then, for
anyf ∈ R with

‖f ,R‖ < 2C2
SCN

−1
, (12)

in the set{u : ‖u;D‖ < 2CSCN
−1}, there exists

a unique solutionu to the nonlinear equationSu +
N(u,u) = f . The solutionu fulfills the estimate

‖u;D‖ ≤ 2CS‖f ;R‖. (13)

�

In order to solve (NSε), we apply this lemma with the
function spacesD = D l

κ(Ω, ε), R = Rl
κ(Ω, ∂Ω, ε).

Thereby we use the operatorSu = (Sεu, Bεu), with
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Sεu = (−∆v + ∇p,−ε2∆p + div v) andBεu =
(v|∂Ω, ∂nv|∂Ω), The nonlinear operator is defined by
N(u, ũ) = (N(v, ṽ), 0, 0) with u, ũ ∈ D l

κ(Ω, ε)
andN(v, ṽ) = (v · ∇)ṽ or N(v, ṽ) = (v · ∇)ṽ +
2−1(div v)ṽ. Based on embeddings theorems one can
prove the following result:

Lemma 4 If l ≥ κ ≥ 0, i = 1, 2, 3, then

‖v ∂iw;H l−1
κ−1(Ω, ε)‖ (14)

≤ C ‖v;H l+1
κ+1(Ω, ε)‖ ‖w;H l+1

κ+1(Ω, ε)‖,

whereC depends neither onε ∈ (0, 1], nor onv and
w.

Corollary 5 Let κ ∈ [0, 3/2), and l ≥ κ. There
exist constantsρ > 0,M > 0, independent of
ε ∈ (0, 1], with the property: For any set of data
(f, g) ∈ Rl(Ω, ∂Ω)⊥ (cf. the notations after Theo-
rem1), which fulfil the smallness condition

‖(f, g);Rl
κ(Ω, ∂Ω, ε)‖ ≤ ρ, (15)

there exists a unique solutionuε ∈ D l(Ω, ε)⊥ to the
nonlinear problem(NSε), with

‖uε;D l
κ(Ω, ε)‖ ≤ M ‖(f, g);Rl

κ(Ω, ∂Ω, ε)‖. (16)

PROOF. This result follows immediately from
Lemma 3 if we observe that Theorem 1 gives an es-
timate forCS independent ofε, while Lemma 4 does
this job for the constantCN . Moreover, the compat-
ibility condition (5) is not influenced by the nonlin-
ear term, thereforeN(u, u) ∈ Rl(Ω, ∂Ω)⊥ for any
u ∈ D lH(Ω). �

The same arguments are used to prove the corre-
sponding result for the stationary Navier-Stokes sys-
tem. Again, we shorten notations toRl(Ω, ∂Ω) =
H l−1(Ω)3 × H l(Ω) × H l+1/2(∂Ω)3 and Dl(Ω) =
H l+1(Ω)3 ×H l(Ω).

Corollary 6 Let l ∈ N, and(f, g′) ∈ Rl(Ω, ∂Ω) be
given such that the compatibility condition(5) is met.
There exist constantsρ0 > 0 and M0 > 0 with the
property: If the data(f, g′) fulfill the smallness con-
dition

‖(f, g′);Rl(Ω, ∂Ω)‖ ≤ ρ0, (17)

then the Navier-Stokes system(NS0) possesses a
unique solutionu ∈ Dl(Ω)⊥ which fulfills

‖u;Dl(Ω)⊥‖ ≤ M0 ‖(f, g′);Rl(Ω, ∂Ω)‖. (18)

Note that (18) implies

‖u;Dl
κ(Ω, ε)⊥‖ ≤ M0 ‖(f, g′);Rl(Ω, ∂Ω)‖. (19)

Like for the linear problems, we want to compare the
solution to the perturbed problem (NSε) with g4 = 0
to those of (NS0). To this end we observe that for
f ∈ H l(Ω)4 andg′ ∈ H l+3/2(∂Ω),

‖(f, g′);Rl
κ(Ω, ∂Ω, ε)‖

≤ ‖(f, (g′, 0));Rl+1
κ (Ω, ∂Ω, ε)‖

≤ ‖f ;H l(Ω)4‖+ ‖g′;H l+3/2(∂Ω)3‖
=: F (20)

holds true with a constant independent ofε and κ
(recall thatκ ≤ l). If we assume that(f, g) satis-
fies (15) atε = 1, then this condition is valid for
all ε ∈ (0, 1]. Thus we can find âρ ≤ min{ρ, ρ0}
where the condition (17) for(f, g′) , with ρ replaced
by ρ̂, implies (15) for(f, g). In this case we obtain
unique solutionsuε andu0 to the nonlinear problems
(NSε) and (NS0) as well, moreover, from the inclu-
sionsH l+1(Ω)4 ⊂ H l+1(Ω)3 × H l(Ω) ⊂ H l(Ω)3,
and the estimates (16), (19) and (20) we have

‖uε;Dl
κ(Ω)⊥‖, ‖u0;Dl

κ(Ω)⊥‖ ≤ M̃ F (21)

independent ofε.

Theorem 7 Let κ, l, δ satisfy the conditions of The-
orem 2. Let f, g′ be fixed under the conditions ex-
plained above, furthermore,u0 = (v0, p0) anduε =
(vε, pε) denote the solutions to the Navier-Stokes
problem(NS0), and the perturbed problem(NSε), re-
spectively, while the pressure componentsp0 and pε

have zero mean value inΩ. Then there exists âρ0 ≤ ρ̂
such that, under the conditionF ≤ ρ̂0 , the difference
uε − u0 can be estimated by inequality(9), in partic-
ular.

‖vε − v0;Hκ+1−δ(Ω)3‖ + ‖pε − p0;Hκ−δ(Ω)‖
≤ C εδF. (22)

PROOF. The differencesrε = vε−v0, qε = pε−
p0 satisfy the following perturbed Stokes problem:

−∆rε + N(vε, rε)−N(rε, v0) +∇qε = 0,

div rε = ε2∆pε in Ω,

rε = 0 on∂Ω.

From the results quoted in Section 2, we conclude,
that the mappingu = (v, p) 7→ (−∆v + ∇p, div v)
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defines an isomorphism

S : Dl,0
κ−δ := {u ∈ Dl

κ−δ(Ω, ∂Ω, ε) :
v = 0 on∂Ω,

∫
Ω p = 0}

→ Rl,0
κ−δ = {f ∈ Rl

κ−δ(Ω) :
∫
Ω f4 = 0}.

Here the norm ofS−1 is bounded independent of
ε ∈ (0, 1] due to (6) whileε independent bounds forS
follow immediately from the definition of the norms.
The error system above has the structureSr+Pr = f
with a linear perturbationP, and the operatorS + P
keeps the properties ofS, if P is small. Lemma 4
leads to the estimate

‖P(rε, qε);Rl
κ−δH(Ω, ε)‖

= ‖N(vε, rε)−N(rε, v0);H l−1
κ−δ−1(Ω, ε)‖

≤ C
(
‖vε;H l+1

κ−δ+1(Ω, ε)‖

+‖v0;H l+1
κ−δ+1(Ω, ε)‖

)
‖rε;H l+1

κ−δ+1(Ω, ε)‖

≤ C F ‖rε;H l+1
κ−δ+1(Ω, ε)‖,

for the last inequality we used (21). Thus, we have
proved that

‖P : Dl,0
κ−δ → Rl,0

κ−δ‖ ≤ C F

independent ofε ∈ (0, 1], and by a classical per-
turbation argument, the assertions and arguments of
Theorem 2 remain valid for the operatorS + P if F is
small enough. �

Conclusions. For small data, the Navier-Stokes
problem (NS) as well as as the perturbed problem
(NSε) possess a unique solution. If the data are
smooth enough, the velocity partvε converges tov0

in H2(Ω)3, while the pressurepε converges top0 in
H1(Ω) as ε tends to0. The convergence order in
H1(Ω)3 and L2(ω), respectively, is higher than the
order obtained by energy methods.
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