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Abstract: The spatially distributed hydrologic model WetSpa is applied to the Torysa river basin (1297 km2) 
located in Slovakia. Daily hydrometeorological data from 1991 to 2000, including precipitation data from 14 
stations, temperature data from 2 stations and evaporation data measured at one station are used as input to the 
model. The spatial characteristic of the basin are described by three base maps, i.e. DEM, landuse and soil 
type, in GIS form using 100 m cell size. Results of the simulations show a good agreement between calculated 
and measured hydrographs at the outlet of the basin. The model predicts the daily discharge values with a 
good accuracy, i.e. about 73% according to the Nash-Sutcliff criterion. Sensitivity and uncertainty analysis of 
the model parameters is performed using a model-independent parameter estimator, PEST. It is found that the 
correction factor for calculating the actual evapotranspiration from potential evaporation has the highest 
relative sensitivity. Parameter uncertainty analysis gives an insight of a proper parameter set and parameter 
interval. 
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1   Introduction 
Distributed hydrological models are usually 
parameterized by deriving estimates of parameters 
from the topography and physical properties of the 
soils, aquifers and land use of the basin. The 
reliability of model predictions depends on how well 
the model structure is defined and how well the 
model is parameterized. However, estimation of 
model parameters is difficult due to the large 
uncertainties involved in determining the parameter 
values, which can not be directly measured in the 
field. Therefore model calibration is necessary to 
improve the model performance (Liu et al., 2005). 
Manual calibration and automatic calibration are 
two types of parameter estimation approaches. 
Automatic calibration involves the use of a search 
algorithm to determine best-fit parameters, and it 
offers a number of advantages over the manual 
approach. Automatic calibration is fast, it is less 
subjective, and since it makes an extensive search of 
the existing parameter possibilities, it is highly 
likely that results would be better than that which 
could be manually obtained. Unfortunately, model 
calibration does not guarantee reliability of model 
predictions. The parameter values obtained during 
calibration and the subsequent predictions made 
using the calibrated model are only as realistic as the 

validity of the model assumptions for the study 
watershed and the quality and quantity of actual 
watershed data used for calibration and simulation. 
Therefore, even after calibration, there is potentially 
a great deal of uncertainty in results that arises 
simply because it is unlikely to have error-free 
observational data (e.g. precipitation, streamflow, 
topography) and because no simulation model is an 
entirely true reflection of the physical process being 
modeled (Muleta and Nicklow, 2004). Sensitivity 
analyses are valuable tools for identifying important 
model parameters, testing the model 
conceptualization, and improving the model 
structure. They help to apply the model efficiently 
and to enable a focused planning of future research 
and field measurement (Siebera and Uhlenbrook, 
2005). Due to spatial variability, budget constraints 
or access difficulties model input parameters always 
contain uncertainty to some extent. However, a 
model user has to assign values to each parameter. 
The model is then calibrated against measured data 
to adjust the parameter values according to certain 
criteria. This implies that the modeler has a clear 
understanding of all the parameters used as input to 
the model and of the processes represented in the 
model. Parameters that are not well understood may 
be left unchanged even though they are sensitive or 
are adjusted to implausible values. Not knowing the 
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sensitivity of parameters can also result in time 
being uselessly spent on non-sensitive parameter 
optimization trials. Focus on sensitive parameters 
can lead to a better understanding and to better 
estimated values and thus reduced uncertainty 
(Lenhart et al., 2002). Therefore sensitivity analysis 
as an instrument for the assessment of the input 
parameters with respect to their impact on model 
output is useful not only for model development, but 
also for model validation and reduction of 
uncertainty (Hamby, 1994). 

The WetSpa model used in this study is a grid-
based distributed runoff and water balance 
simulation model that runs on an hourly or daily 
time step. It predicts hourly or daily overland flow 
occurring at any point in a watershed, and provides 
spatially distributed hydrologic characteristics in the 
basin. Inputs to the model include digital elevation 
data, soil type, land use data, precipitation and 
potential evaporation time series. Stream discharge 
data is optional for model calibration. In this paper, 
an application of the WetSpa model is presented for 
a rather large catchment located in Slovakia. 
Automatic calibration, and sensitivity and 
uncertainty analysis of the model parameters are 
performed using a model-independent parameter 
estimator, PEST. 
 
2   WetSpa model 
The WetSpa model was originally developed by 
Wang et al. (1997) and adapted for flood prediction 
by De Smedt et al. (2000) and Liu et al. (2003). The 
hydrological processes considered in the model are 
precipitation, interception, depression storage, 
surface runoff, infiltration, evapotranspiration, 
percolation, interflow, groundwater flow, and water 
balance in each layer. For each grid cell, four layers 
are considered in the vertical direction: a canopy 
layer, the root zone, a transmission zone and the 
groundwater reservoir. The total water balance for 
each raster cell is composed of a separate water 
balance for the vegetated, bare-soil, open water and 
impervious part of each cell. This allows to account 
for the non-uniformity of the land use per cell, 
which is dependent on the resolution of the grid. A 
mixture of physical and empirical relationships is 
used to describe the hydrological processes in the 
model. The model predicts peak discharges and 
hydrographs in any location of the channel network 
and the spatial distribution of hydrological 
characteristics in each cell. Hydrological processes 
in each grid cell are set in a cascading way, starting 
from a precipitation event. Incident rainfall first 
encounters the plant canopy, which intercepts all or 

part of the rainfall until the interception storage 
capacity is reached. Excess water reaches the soil 
surface and can infiltrate the soil zone, enter 
depression storage, or diverted as surface runoff. 
Depression storage is subject to evaporation and 
further infiltration. The sum of the interception and 
depression storage forms the initial losses at the 
beginning of a storm, and does not contribute to the 
storm flow. The surface runoff or rainfall excess is 
calculated using a moisture-related modified rational 
method with a potential runoff coefficient depending 
on the land cover, soil type, slope, the magnitude of 
rainfall, and the antecedent soil moisture. The values 
of potential runoff coefficient are taken from 
literature and a lookup table, linking values to slope, 
soil type and landuse classes (Liu, 2004). The 
difference between net precipitation and excess 
rainfall is the amount of infiltration into the soil. 
Evapotranspiration from the soil and vegetation is 
calculated as a function of potential 
evapotranspiration, vegetation type, stage of growth 
and soil moisture content. For the surface layer, 
actual evapotranspiration is computed as the area-
weighted mean of the land use percentage, for which 
transpiration occurs from the vegetated parts and 
evaporation from the soil, while there is no 
evaporation from impervious areas. A portion of the 
remaining potential evapotranspiration is 
transpirated from the groundwater as a proportion of 
the groundwater storage. Finally, the total 
evapotranspiration is calculated as the sum of 
evaporation from interception storage, depression 
storage, and the evapotranspiration from soil and 
groundwater storage. For each grid cell, the root 
zone water balance is modeled continuously by 
equating inputs and outputs. The change of soil 
moisture content for each time interval is determined 
by subtracting the volume of initial abstraction 
(interception and depression), surface runoff, 
evapotranspitration, interflow, and percolation from 
the root zone. A fraction of the soil water percolates 
to the groundwater storage and some is diverted as 
interflow. The root zone is also subjected to 
evapotranspiration depending on the potential 
evapotranspiration rate and the available soil 
moisture. Groundwater discharges to the nearest 
channel proportional to the groundwater storage and 
the recession coefficient. Evapotranspiration from 
groundwater storage is also accounted for. Total 
runoff from a grid cell is the summation of surface 
runoff, interflow and groundwater discharge. 
Percolation and interflow are assumed to be gravity 
driven. The percolation out of the root zone is 
equated as the hydraulic conductivity depending on 
the moisture content as a function of the soil pore 
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size distribution index. Interflow is assumed to 
occur in the root zone after percolation and becomes 
significant only when the soil moisture is higher 
than field capacity. Darcy’s law and a kinematic 
wave approximation are used to determine the 
amount of interflow generated from each cell, in 
function of hydraulic conductivity, the moisture 
content, slope angle, and the root depth. The routing 
of overland flow and channel flow is implemented 
by the method of the diffusive wave approximation 
(Liu et al., 2003). An approximate solution using a 
two-parameter response function, termed average 
flow time and the standard deviation of the flow 
time, is used to route water from each grid cell to the 
basin outlet or a selected convergent point in the 
basin. The flow time and its variance are determined 
by the local slope, surface roughness and the 
hydraulic radius for each grid cell. The flow path 
response function at the outlet of the basin or any 
other down stream convergent point is calculated by 
convoluting the responses of all cells located within 
the drainage area in the form of the probability 
density function. This routing response serves as an 
instantaneous unit hydrograph and the total 
discharge is obtained by convolution of the flow 
responses from all spatially distributed precipitation 
excesses generated in the grid cells (De Smedt et al., 
2005).   

Because, groundwater movement is much slower 
than the movement of water in the surface and near 
surface water system, groundwater flow is 
simplified as a lumped linear reservoir on small GIS 
derived subcatchment scale. Considering the river 
damping effect for all flow components, overland 
flow and interflow are routed firstly from each grid 
cell to the main channel, and joined with 
groundwater flow at the subcatchment outlet. Then 
the total hydrograph is routed to the basin outlet by 
the channel response function. The total discharge is 
the sum of overland flow, interflow and 
groundwater flow, and is obtained by convolution of 
the flow responses from all grid cells. An advantage 
of this approach is that it allows the spatially 
distributed runoff and hydrological parameters of 
the basin to be used as inputs to the model. Inputs to 
the model include digital elevation data, soil type, 
land use data, and measured climatologic data. 
Stream discharge data is optional for model 
calibration. All hydrological processes are simulated 
within a GIS framework. 

Since, a large part of the annual precipitation is in 
the form of snow, the conceptual temperature index 
or degree-day method (Martinec et al., 1983) is used 
to simulate snow melt. The degree-day method is 
simple but nevertheless has a strong physical 

foundation. The method replaces the full energy 
balance with a term linked to air temperature. It is 
physically sound in the absence of shortwave 
radiation when much of the energy supplied to the 
snow pack is atmospheric long wave radiation.  

The WetSpa distributed model potentially involves 
a large number of model parameters to be specified 
during the model setup. Most of these parameters 
can be assessed from the field data, e.g. 
hydrometeorological observations, maps of 
topography, soil types, and land use, etc. However, 
comprehensive field data are seldom available to 
fully support specification of all model parameters. 
In addition, some model parameters are of a more 
conceptual nature and cannot be directly assessed. In 
the process of WetSpa model parameterization, the 
spatial patterns of the parameter values are defined 
using the available filed data to describe the most 
significant variations. This is done by using a data 
base and defining appropriate parameter classes of 
topography, soil type, land use, etc. For each class, 
all parameters are assessed directly from the data 
base. This approach enables to apply the model with 
information that is available in a catchment. The 
model has been applied in several studies, e.g. 
Barebeek catchment in Belgium (De Smedt et al., 
2000), Alzette river basin in Luxembourg (Liu et al., 
2003) and Hornad watershed in Slovakia 
(Bahremand et al., 2005), with different success. 
Gradually, major correction factors were introduced 
to compensate for the lack of precise field data and 
particular condition that might be present in the 
catchment. This approach enables to apply 
automated calibration procedures to improve the 
model performance.   

The major model parameters that can be calibrated 
are listed in Table 1. All other model parameters are 
automatically derived using GIS tools and are kept 
constant. The choice of parameters to calibrate is 
based on earlier studies of the WetSpa model (Liu et 
al. 2003; Liu 2004). 
Table 1. The model global parameters. 

Symbol     Parameter                                        Unit          
Ki    interflow scaling factor                             -                
Ks    initial soil moisture                                   -               
Ke    correction factor for PET                          -        
Kg    groundwater recession coefficient           d-1  
Kgi   initial active groundwater storage           mm         
Kgm  maximum active groundwater storage    mm          
Km   moisture or surface runoff exponent        -                
Kp    maximum rainfall intensity                   mm d-1   

Scaling factor for interflow computation, Ki, 
considers the effects of organic matter and root 
system on hydraulic conductivity used in interflow 
calculation. Initial soil moisture, Ks, is a ratio 
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against field capacity defined in the input parameter 
file for setting up the initial soil moisture conditions. 
Soil moisture content is a key element in the model 
controlling the hydrological processes of surface 
runoff production, evapotranspiration, percolation 
and interflow. A proper initial soil moisture 
condition may provide a much more realistic starting 
point for predictions. However, for a long-term flow 
simulation in a watershed, the initial soil moisture 
condition is less important, as it affects the 
hydrological processes only in the initial part of the 
simulation. If the model is used for short-term flow 
simulation or event-based flood prediction, the 
antecedent moisture condition becomes one of the 
most important factors in runoff production as well 
as its distribution. Correction factor for potential 
evapotranspiration (PET), Ke, controls the actual 
evaporatranspiration from soil and the groundwater 
storage based on the measured evaporation data 
input to the model. The PET data used in the model 
are obtained from pan measurement or calculated by 
Pemman-Monteith or other equations using 
available weather data. These reference 
evapotranspiration rates refer to water surface or a 
grass cover in large fields. Actual reference or PET 
rates, however, may depend on local factors that are 
not addressed by these methods. For instance, the 
land use, elevation, as well as the micro-
meteorological conditions for the grid to be 
simulated may be different from those prevailing at 
the site of the meteorological station whose data are 
being used. To account for these effects, a correction 
factor is required in the computed PET. The 
correction factor is normally close to 1, and can be 
calibrated by the model through a long-term water 
balance simulation. Specifically, when modelling in 
a mountainous catchment, the evapotranspiration 
stations are usually very sparse and are located in 
the river valley. To account for the effect of 
elevation, the correction factor for PET may be 
much lower in this case. Groundwater recession 
coefficient, Kg, is the proportionality constant used 
by the model to compute the groundwater flow from 
the groundwater storage. Kgi and Kgm are initial and 
maximum active groundwater storage in depth 
(mm). In the WetSpa model, groundwater balance is 
maintained on subcatchment scale and for the active 
groundwater storage, which is that part of storage in 
perched or shallow aquifers that contribute to the 
surface stream flow. Water percolating from the root 
zone storage may flow to active groundwater storage 
or may be lost by deep percolation. Active 
groundwater eventually reappears as baseflow, but 
deep percolation is considered lost from the 
simulated system. A value of initial groundwater 

storage is set up in the input parameter file for all 
subcatchment. This value can be adjusted during 
calibration by comparing the computed and 
observed low flows for the initial phase. The 
maximum active groundwater storage (Kgm) controls 
the amount of evapotranspiration from the 
groundwater. The parameters Km and Kp are 
combined to modify the potential runoff coefficient 
based on soil moisture and rainfall intensity. 
 
3   Application 
3.1 Study area 
The Torysa river is a tributary of the Hornad river 
located in Slovakia. Figure 1 shows the Torysa basin 
as a subcatchment of the Hornad basin, with 
topography, and location of precipitation and flow 
stations indicated in the figure. The watershed has 
an area of 1297 km2 up to Kosicke Olsany station. 
The river joins the Hornad river at Zdana which is 
located about 17 km at downstream of Kosicke 
Olsany. The Torysa basin is mountainous, with 
elevations ranging from 189 to 1261 m. The mean 
elevation of the catchment is 509 m, and the mean 
slope about 14.4%.  
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Fig.1. Hydrologic network of Hornad catchment, 
topography of Torysa subcatchment, and location of 
gauging stations. 
 
A digital elevation model (DEM) for the river basin 
was obtained from the Slovak Hydrometeorological 
Institute (SHMU), and converted to a 100 m grid 
size, from which the drainage system and area were 
determined as shown in Figure 1. Land cover data 
were obtained from 30 m Landsat-7 Enhanced 
Thematic Mapper (ETM) satellite data, acquired on 
August 20th, 2000. The final landuse map for this 
study has 100 m cell size, and is composed of 6 
different types of land cover: 41.3% of the basin is 
covered by forest (9.6% coniferous forest and 31.7% 
mixed & deciduous forest), 28.1% grassland and 
pasture, 27.5% agriculture areas, 3.1% urban area 
and about 0.05% water surfaces which are mainly 
reservoirs. The soil types were obtained from the 
Water Research Institute of Slovakia (VUVH). 
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There are 10 different soil textures in the catchment. 
The dominant soil texture is silt loam, which covers 
about 44.5% of the basin, followed by loam 20.3% 
and sandy loam 15.6%. The basin has a northern 
temperate climate with four distinct seasons. January 
is the coldest month and July is the warmest month 
of the year. The highest amount of precipitation 
occurs in the period from May to August while in 
January and February there is usually only snow. 
The mean annual precipitation of the watershed 
based on 10 years data of 14 stations within the 
basin is 630 mm, ranging from about 600 mm in the 
valley to more than 900 mm in the mountains. The 
mean temperature of the catchment based on a 40- 
year period isothermal map is about 6.7oC. The 
annual potential evapotranspiration based on 10 
years data of 1 station (Presov Vojsko) is about 588 
mm. For this study, precipitation, temperature and 
discharge data were obtained from SHMU, whereas 
the potential evapotranspiration (PET) data were 
obtained from the Water Research Institute of 
Slovakia. The sets include daily precipitation of 14 
stations, temperature of 2 stations, PET at 1 station, 
and daily discharge data at 6 gauging stations. All 
these data are available for a 10 year period from 
1991 to 2000. Daily discharge data at 6 locations are 
available inside the catchment, but only the station 
Kosicke Olsany is used for model calibration 
(Bahremand et al., 2005).  
 
3.2  Model simulation 
Once the required data are collected and processed 
for use in the WetSpa modeling platform, 
identification of spatial model parameters is 
undertaken. Terrain features in each grid cell 
including elevation, flow direction, flow 
accumulation, stream network, stream link, stream 
order, slope, and hydraulic radius are first extracted 
from the DEM. The threshold for delineating the 
stream network is set to 10, i.e. a cell is considered 
being drained by streams when the upstream drained 
area becomes greater than 0.1 km2. The threshold 
value for determining subcatchments is set to 1000, 
by which 65 subcatchments are identified with an 
average subcatchment area of 20 km2. The grid of 
hydraulic radius is generated using a power law 
relationship, which relates hydraulic radius to the 
drained area (Liu et al., 2003), with an exceeding 
frequency of 0.5 (2-year return period) resulting in 
an average hydraulic radius of 0.005 m for the 
upland cells and 1.5 m at the outlet of the main river 
channel. Next, the grids of soil hydraulic 
conductivity, porosity, field capacity, residual 
moisture, pore size distribution index, and plant 

wilting point are reclassified based on the soil 
texture grid by means of an attribute lookup table. 
Similarly, the grids of root depth, interception 
storage capacity, and Manning’s roughness 
coefficient are reclassified from the land use grid. 
For the river channels the Manning’s coefficient is 
linearly interpolated based on the stream order grid 
with 0.055 m-1/3s for the lowest order and 0.025 m-

1/3s for the highest order. The grids of potential 
runoff coefficient and depression storage capacity 
are obtained by means of attribute tables combining 
the grids of elevation, soil and land use, for which 
the percentage of impervious area within an urban 
cell is set to 30%. The grids for precipitation, 
temperature and PET are created based on the 
geographical coordinates of each measuring station 
and the catchment boundary using the Thiessen 
polygon extension of the ArcView Spatial Analyst. 
Finally, the grids of flow velocity, travel time to the 
basin outlet, as well as the standard deviation are 
generated, which enables to calculate the IUH from 
each grid cell to the basin outlet. Flow time for the 
most remote area is around 55 hours. The mean 
travel time for the entire catchment is 23 hours. 
 
4   Results and discussion 
4.1   Model calibration 
For the model calibration, PEST program was used 
in this study. PEST is a nonlinear parameter 
estimation and optimization package, and is one of 
the most recently developed systems offering model 
independent optimization routines (Doherty and 
Johnston, 2003). It applies a robust Gauss–
Marquardt–Levenberg algorithm, which combines 
the advantages of the inverse Hessian method and 
the steep descent method and therefore provides 
faster and more efficient convergence towards the 
objective function minimum. The best set of 
parameters is selected from within reasonable ranges 
by adjusting the values until the discrepancies 
between the model generated values and those 
measured in the field is reduced to a minimum in the 
weighted least squares sense. Due to its model-
independent characteristic, PEST can be used easily 
to estimate parameters in an existing computer 
model, and can estimate parameters for one or a 
series of models simultaneously. Since its 
development, PEST has gained extensive use in 
many different fields, for instance, the automated 
model calibration and data interpretation in the 
groundwater model MODFLOW/MT3D (Doherty 
and Johnston, 2003) and some other surface runoff 
and water quality models (Baginska et al., 2003; 
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Syvoloski et al., 2003). Liu et al. (2005) applied 
PEST for the WetSpa model auto-calibration. 

By combining a powerful inversion engine, PEST 
communicates with WetSpa through the model's 
own input and output files. During automatic 
calibration, model parameters are adjusted 
automatically according to the PEST optimization 
objective functions. The process is repeated until the 
stopping criterion is satisfied, e.g. maximum number 
of iterations, convergence of the total objective 
function, or convergence of the parameter set. The 
specifications of the calibration algorithm include 
model parameterization, the selection of calibration 
parameters, defining feasible parameter variation 
range, assigning prior information to a parameter 
group, assigning weights to members of the 
observation group, etc. 

The 10 years (1991-2000) measured daily 
precipitation, temperature, PET, and discharge data 
are used for model calibration. The calibration 
process is performed for the global model 
parameters only, whereas the spatial model 
parameters are kept as they are. Because 
autocalibration and sensitivity analysis can be 
affected by initial input parameters (more discussion 
about the setting effect of initial parameter values is 
given in the next section), therefore to diminish 
these effects, a primary manual calibration is done to 
obtain proper initial parameters. Initial global model 
parameters are specifically chosen according to the 
basin characteristics as discussed in the 
documentation and user manual of the model (Liu 
and De Smedt, 2004). The simulation results are 
then compared to the observed hydrograph at 
Kosicke Olsany both graphically and statistically. 
The groundwater flow recession coefficient (Kg) is 
adjusted by fitting the baseflow, which is separated 
from the observed hydrograph. The interflow scaling 
factor (Ki), which is sensitive for high flows, is 
adjusted for the recession part after flood peak. The 
two parameters controlling the amount of surface 
runoff, i.e. the surface runoff exponent for a near 
zero rainfall intensity (Km) and the rainfall intensity 
corresponding to a surface runoff exponent of 1 
(Kp), are adjusted mainly for small storms, for which 
the actual runoff coefficients are small due to the 
low rainfall intensity. Initial soil moisture (Ks) and 
active groundwater storage (Kgi) are adjusted by 
comparison of the hydrographs and water balance 
for the initial phase. The maximum active 
groundwater storage (Kgm) controls the amount of 
transpiration from the groundwater, and therefore 
can be adjusted by comparison of the flow volume 
during dry periods.  

With the initial parameter values obtained from the 
manual calibration, the PEST program is applied to 
run the WetSpa model for a sufficient number of 
optimization iterations, i.e. 30 iterations. Setting a 
value of 20 to 30 as maximum number of 
optimization iterations is often appropriate (Doherty 
et al., 1994). PEST estimates the best values of the 
model parameters by minimizing the sum of squares 
of the differences between calculated and measured 
model results. Figures 2 gives a graphical 
comparison between observed and calculated daily 
flow at Kosicke Olsany for the year 1999, showing 
that both the spring and summer flood hydrographs 
are well reproduced by the model. The simulation of 
snowmelt flood is important in this study, as it not 
only contributes to the results of model evaluation, 
but also provides a reliable soil moisture estimation 
at the end of the snow melting period, which affects 
following rainfall runoff processes. The calibrated 
groundwater flow recession coefficient at Kosicke 
Olsany is 0.000075 d−1, and gives a good estimation 
for all base flows. Peak discharges, concentration 
time, and flow volumes are well predicted. The 
model performance is satisfactory, the flow volume 
is well reproduced, and the model efficiency (Nash-
Sutcliffe criterion) is 73%. This indicates that the 
model is able to consider the precipitation, 
antecedent moisture, and runoff-generating 
processes in a spatially realistic manner based on 
topography, land use and soil type, resulting in a 
fairly high accuracy for both high and low flows, 
and the general hydrological trends being well 
captured by the model. The model shows that 8.9% 
of the precipitation is intercepted by the plant 
canopy, 83.6% infiltrates to the soil, 73.0% 
evapotranspirates to the atmosphere, 18.5% 
recharges to the groundwater reservoir, and 26.9% 
becomes runoff, of which direct flow, interflow, and 
groundwater flow contribute 5.2%, 4.2% and 17.5% 
respectively. These values are reasonable in view of 
the catchment hydrological characteristics. 

 
Fig.2. Graphical comparison between observed and 
calculated daily flow at Kosicke Olsany for the year 
1999. 
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4.2   Sensitivity and uncertainty analysis 
Sensitivity analysis can be used in the initial model 
parameterization process to investigate which 
parameters are sensitive with respect to the available 
observations, and which are insensitive and can be 
set to fixed values. PEST provides an independent 
sensitivity analysis module by adjusting model 
inputs, running the model, reading the outputs of 
interest, recording their values, and recommencing 
the computing cycle. However, the results of such 
an analysis should be carefully interpreted. The 
dimensionless, scaled sensitivities depends on the 
parameter values, and hence sensitivity statistics 
evaluated at some initial parameter values may be 
very different from the statistics obtained using 
other parameter sets (Hill, 1998). In addition, 
sensitivity statistics do not properly account for 
parameter correlations, implying that parameters 
that seem to be insensitive may have important 
correlations with other parameters that are essential 
for the model behavior (Madsen, 2002). 

PEST uses a nonlinear estimation technique 
known as the Gauss-Marquardt-Levenberg method. 
The strength of this method lies in the fact that it can 
generally estimate parameters using fewer model 
runs than any other estimation method, a definite 
bonus for large models whose run times may be 
considerable. For nonlinear problems (most models 
fall into this category), parameter estimation is an 
iterative process. At the beginning of each iteration 
the relationship between model parameters and 
model-generated observations is linearised by 
formulating it as a Taylor expansion about the 
currently best parameter set; hence the derivatives of 
all observations with respect to all parameters must 
be calculated. This linearised problem is then solved 
for a better parameter set, and the new parameters 
tested by running the model again. By comparing 
parameter changes and objective function 
improvement achieved through the current iteration 
with those achieved in previous iterations; PEST can 
tell whether it is worth undertaking another 
optimization iteration; if so the whole process is 
repeated. The ability to calculate the derivatives of 
all observations with respect to all adjustable 
parameters is fundamental to the Gauss-Marquardt-
Levenberg method of parameter estimation; these 
derivatives are stored as the elements of the 
Jacobian matrix used for sensitivity analysis. The 
composite sensitivity of each parameter is the 
normalized (with respect to the number of 
observations) magnitude of the column of the 
Jacobian matrix pertaining to that parameter. The 
Jacobian matrix comprised of m rows (one for each 
observation), and the n elements of each row are the 

derivatives of one particular observation with 
respect to each of the n parameters. The parameter 
sensitivity value is expressed by the relative 
composite sensitivity obtained by multiplying its 
composite sensitivity by the magnitude of the value 
of the parameter. The use of relative sensitivities in 
addition to normal sensitivities assists in comparing 
the effects that different parameters have on the 
parameter estimation process when these parameters 
are of different type, and possibly of very different 
magnitudes (Doherty et al., 1994). 

The auto calibrated parameters and the result of 
parameter sensitivity analysis after the optimization 
process are presented in Table 2. As can be seen in 
the table, the relative sensitivity of the 8 calibration 
parameters varies within the range 0.005-0.308. 
Parameter Ke, which controls the actual 
evapotranspiration from soil and the groundwater 
storage, has the highest relative sensitivity. 
Parameter Km, controlling the volume of surface 
runoff in the model, has the second highest 
sensitivity. Parameter Kgm has the least relative 
sensitivity. For this simulation Ks has the third place 
in the sensitivity ranking, but for a short period 
simulation this parameter has a more sensitive effect 
because the beginning of simulated hydrograph is 
always affected by the initial soil moisture 
condition. 

PEST also gives a correlation matrix of the 
calibration parameters. This matrix shows that there 
are no significant correlations between parameters, 
except there is a rather high negative correlation 
between Ks and Kgi (R = -0.74), and a moderate 
positive correlation between Ke and Kgm (R = 0.53). 
Because sensitivities are calculated by changing the 
parameters one by one, they are not influenced by 
parameter correlations (van Griensven, 2002). 
Table 2: Parameter values before and after automated 
calibration, and their relative sensitivities. 

Parameter Unit Initial 
value 

Auto 
calibration

Relative 
sensitivity Rank

Ki - 7.0 5.9 0.093 4 

Ks - 1 0.95 0.128 3 

Ke - 1 1.06 0.308 1 

Kg d-1 4.1×10-5 7.5×10-5 0.025 5 

Kgi mm 63 34.5 0.013 7 

Kgm mm 630 1300 0.005 8 

Km - 2.75 2.25 0.136 2 

Kp mm d-1 250 660 0.015 6 
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After the parameter estimation process, PEST gives 
a list of the estimated parameters. The best 
estimates, which are point estimates, by themselves, 
do not portray the reliability or lack of reliability 
(variability) of these estimates. In this study, 
uncertainty or reliability of estimates is presented 
using interval estimates. The presentation of 95% 
confidence limits provides a useful means of 
comparing the certainty with which different 
parameter values are estimated by PEST. In addition 
to the best estimates, m, PEST also estimates the 
standard deviation, s, of the parameter estimates, so 
that significance intervals for each parameter are 
obtained as m ± tα,ns, where  tα,n is student’s t-
distribution, with probability α and n degrees of 
freedom.  In the present case n corresponds to the 
number of data minus the number of parameters that 
needs to be estimated, and for α usually 0.025 is 
chosen, so that each parameter is contained in the 
predicted interval with a probability of 1-2α, i.e. 
95%. Table 3 gives the confidence intervals of the 
estimates that portray the uncertainty involved in the 
calibrated parameters. The table shows that 
Parameter Kgm is estimated with a large margin of 
uncertainty. It should be noted that the initial given 
value of this parameter is within its confidence 
interval which means that statistically there is no 
meaningful difference between the initial value of 
Kgm and its estimated value. This uncertainty could 
be because of the correlation between this parameter 
(as the least sensitive parameter) and parameter Ke 
(as the most sensitive parameter). 
Table 3. The 95% confidence intervals of the calibrated 
parameters.  

Para-
meter 

Initial 
value 

Estimated 
value 

Standard 
deviation 

Lower 
limit 

Upper 
limit 

Ki 7.0 5.9 0.087 5.7 6.1 

Ks 1 0.95 0.015 0.92 0.98 

Ke 1 1.06 0.005 1.05 1.07 

Kg 
4.1 

×10-5 
7.5 

×10-5 
4.2 

×10-6 
6.7 

×10-5 
8.3 

×10-5 
Kgi 63 34.5 5.26 24.2 44.8 

Kgm 630 1300 414 488 2112 

Km 2.75 2.25 0.023 2.21 2.30 

Kp 250 660 58.6 545 775 

It is found that the calibrated parameter set resulting 
from different initial values may differ considerably, 
and so does the evaluation results of the model 
performance. This is due to model nonlinearity, 
model uncertainty and high correlations between 

parameters, which makes the global minimum in the 
objective function difficult to find. The problem of 
nonlinearity is one of the major problems in the 
application of distributed modeling in hydrology 
particularly in large catchments. In the WetSpa 
model, the surface runoff is estimated by a modified 
rational method, the routing of flow is characterized 
by the linear transfer functions of the diffusive flood 
wave, and the groundwater flow is simplified by a 
linear reservoir method. This apparent linearity does 
not apply to the relationship between rainfall inputs 
and river discharge that is known to be a nonlinear 
function of antecedent conditions, rainfall volume, 
and the interacting surface and subsurface processes 
of runoff generation. As pointed out by Beven 
(2001), the use of pedotransfer functions to estimate 
a set of average model parameters at the element 
scale of a distributed hydrological model should not 
be expected to give accurate results. The problem of 
uncertainty arising from the modeling process is 
associated with the input data (temporal and spatial 
variability of parameters, initial and boundary 
conditions), the model assumptions and algorithms 
for describing the processes, and the measurements 
for model calibration and validation. The high 
uncertainty and correlations of the model parameters 
usually result in the non-uniqueness of parameter 
estimates and model predictions, making it difficult 
by the fact that the objective function may possess 
local minima, distinct from the global minimum.   
To tackle this problem, it is always expected to 
supply an initial parameter set close to the true 
parameter set. This makes PEST optimization more 
efficiently, especially for highly nonlinear models or 
models with local objective function minima in the 
parameter space. Moreover, a suitable choice for the 
initial parameter set can also reduce the number of 
iterations necessary to minimize the objective 
function. For modeling in a large catchment or 
modeling with a high spatial and temporal 
resolution, this can mean considerable savings in 
computer time (Doherty et al., 1994). However, 
setting a proper initial parameter set is not an easy 
task. It needs a fully understanding of both the 
hydrological model and the physical characteristics 
of the study catchment. A trial with a number of 
different initial parameter set in PEST to find a more 
reliable parameter estimates is sometimes necessary. 
In this study, to assign a proper initial parameter set 
and to avoid the inefficiency caused by an 
unsuitable set, the final input parameters obtained 
from the manual calibration were used as the initial 
input parameters to the PEST. 

From the experiences of this study, it is illustrated 
that PEST can be incorporated with a distributed 
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hydrological model to estimate efficiently the model 
parameters. From practical and methodological 
points of view, the number of real calibration 
parameters should be kept low. This can be done by 
fixing the insensitive parameter values based on the 
PEST sensitivity analysis. Also, assigning different 
weights to the observations depending upon the data 
accuracy or the main target of the model may highly 
increase the efficiency of model calibration and the 
reliability of the parameter set. 
 
4   Conclusion 
In this paper an attempt is made to outline a method 
for estimating flood runoff in the Torysa basin by 
using detailed basin characteristics together with 
meteorological data as an input to the WetSpa 
spatially distributed model. To avoid the complexity 
inherent in estimating surface runoff, a simple but 
effective approach is presented where the whole 
basin is divided into grid cells, giving the possibility 
to simulate the hydrologic processes at reasonably 
small scale. The generation of runoff depends upon 
rainfall intensity and soil moisture and is calculated 
as the net precipitation times a runoff coefficient, 
which depends upon slope, land use and soil type. 
Overland flow is routed through the basin along 
flow paths determined by the topography using a 
diffusive wave transfer model, while interflow and 
groundwater recharge are simulated using Darcy’s 
law and the kinematic approximation. Model 
parameters based on surface slope, land use, soil 
type and their combinations are collected from 
literature, which can be prepared easily using 
standard GIS techniques. The model is tested on the 
Torysa catchment in Slovakia with 10 years of 
observed daily rainfall and evaporation data. Good 
agreement with the measured hydrograph is 
achieved. 

This paper also presents a strategy by 
incorporating a model-independent parameter 
estimator PEST for automatic calibration and 
sensitivity analysis. The results of this study 
demonstrate that the use of combining a GIS-based 
hydrological model with PEST can produce 
calibrated parameters that are physically sensible. 
The relative sensitivity of 8 lumped parameters is 
given using the PEST automated calibration scheme. 
It is found that the correction factor for calculating 
the actual evapotranspiration from PET has the 
highest relative sensitivity. The margin of 
uncertainty of each parameter is determined as they 
show e.g. the estimation of Parameter Kgm has the 
highest uncertainty. Parameter uncertainty analysis 

gives an insight of a proper parameter set and 
parameter interval.  

Since the spatial distribution of hydrologic 
characteristics can be obtained from the model 
outputs at each time step, the model is especially 
useful to analyze the effects of topography, soil 
type, and landuse on the hydrologic behavior of a 
river basin.  
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