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Abstract: We present a numerical method for the simulation of the motion of rigid bodies in incompressible
generalized Newtonian fluids. This work is motivated by the study of some physiological phenomena occurring
in the human cardiovascular system where the bodies may be blood particles, clots or valves that we assume to
be rigid. This new method is based on a variational formulation on the whole fluid/solid domain introducing
constraints that enforce the rigid motion of the bodies. The core of this method consists in relaxing the constraints
by introducing a penalty parameter (hyper-viscosity). The convergence to the solution of the relaxed problem is
established. Finally we present some numerical results using a common benchmark for this type of problems.
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1 Introduction

The theoretical and numerical study of fluid–rigid
body interactions is of major importance in many in-
dustrial and biological processes. For example the set-
tling and lift–off of particles is crucial in channel flows
in the petroleum and coal industries ([3]). However, in
this paper we focus our attention on biomedical appli-
cations. The study of blood circulation in the human
cardiovascular system can involve interaction prob-
lems of blood flow with valves (see [5]), blood clots or
a number of suspended particles. For this reason we
look for a model that reflects some of the rheologi-
cal properties of blood and allows to consider some
of these interaction problems. Blood is a complex
mixture consisting of many different particles (ery-
throcytes, leukocytes, platelets and other matter) sus-
pended in an aqueous polymer solution, the plasma
(Newtonian fluid). These suspended particles, con-
sisting mostly of erythrocytes (red blood cells) form
about 45% of the volume of normal human blood and
their effect should not be ignored. However, in large
and medium vessels blood is usually modelled as a
Newtonian liquid but in smaller vessels, with diame-
ters comparable with those of the cells, blood behaves
as a shear-thinning fluid. In particular at rest or at low
shear rates, it is experimentally observed that blood
has a high apparent viscosity (due to erythrocytes ag-
gregation into clusters called rouleaux) while at high
shear rates the cells become disaggregated and de-
form into an infinite variety of shapes without chang-

ing volume, resulting in a reduction of blood viscos-
ity. Moreover since blood cells are essentially elastic
membrane filled with fluid, it seems reasonable to ex-
pect blood to behave like a viscoelastic fluid, at least
under certain conditions. The shear-thinning viscosity
reduces velocity and increases shear rate in regions of
constant shear stress while the viscoelasticity ampli-
fies the effect of normal stresses in regions of constant
shear-stress (see e.g. [6]). It is commonly accepted
that, in blood flow modelling, the shear-thinning ef-
fect is dominant and viscoelasticity can be disregarded
in a first approach. In this work we consider shear-
thinning generalized Newtonian fluids.
Numerical simulations of fluid-rigid body interactions
can be carried out in different ways, roughly divided
in two main classes. The first one involves a moving
mesh following the moving part of the domain. In the
second approach the whole computational domain is
covered by a static mesh, leading to fictitious domain
or embedded domain methods that make use of La-
grange multipliers to enforce the velocity in the solid
phase. The method we propose falls into the second
class, using a penalty operator instead of Lagrange
multipliers.

2 Continuous problem
For simplicity we consider a connected, bounded and
regular domain O ⊂ IR2 and define B as a multiply
connected regular set such that B ⊂ O.
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Figure 1: Model domain

We assume that, at time t ≥ 0, Ω = O − B is filled
with a fluid and B is a rigid inclusion (particle or par-
ticles) in O. We denote by Γ the boundary of O and
by γ the boundary of B. Since the position of B is
likely to vary over time, these sets will be referred to
as Bt and Ωt.

2.1 Fluid motion
The conservation of linear momentum for the motion
of a fluid with velocity u in Ωt is given by

ρf
Du

Dt
= ∇ · σ + ff , in Ωt (1)

where ρf is the constant density, ff the external body
forces per unit volume (e.g. gravity), Du/Dt :=
∂tu + u · ∇u is the material time derivative of u and
σ is the Cauchy stress tensor. We also assume the in-
compressibility of the fluid and as a consequence the
conservation of mass reduces to

∇ · u = 0, in Ωt (2)

The Cauchy stress tensor for incompressible fluids can
be split in terms of the hydrostatic pressure p and the
extra stress tensor τ , i.e.

σ = −pI + τ (3)

We will focus on constitutive relations of this type,
where the extra stress tensor is written in terms of the
shear rate γ̇ and the symmetric part of the velocity
gradient

τ = 2η(γ̇)D(u) = η(γ̇)(∇u + (∇u)T ). (4)

Note that if η is a constant we recover the classical
Navier–Stokes equations. In this work, since we aim
at applications to hemodynamics, we use the Carreau-
Yasuda viscosity model which fits experimental data
(see [2] and references therein) and is given by

η(γ̇) = η∞ + (η0 − η∞) [1 + (λγ̇)a]
n−1

a
. (5)

This is a five constants model where η0 and η∞ are the
asymptotic viscosities at zero and infinite shear rates,
λ is a time relaxation parameter, and a, n are param-
eters chosen to fit experiments (when a = 2 this is
known as the Carreau model). When n = 1 or a = 0
or λ = 0 the viscosity is constant and the fluid behaves
as Newtonian. For n > 1 the fluid is shear-thickening
and for n < 1 it has shear-thinning behaviour. Figure
2 illustrates the viscosity behaviour for several values
of the power index n.
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Figure 2: Viscosity vs. shear rate for the Carreau-
Yasuda model, at different values of the power index
(n = 0.392 corresponds to blood, see [2]).

2.2 Rigid body motion
The motion of B is said to be rigid if the velocity field
over B can be written as

u(x) = U + ω × (x − G), on ∂Bt (6)

where ω and U are respectively the angular and trans-
lational velocities of B and G is a point in B, usually
the center of mass. It can easily be shown that equa-
tion (6) is equivalent to

∇u + (∇u)T = 0, on ∂Bt (7)

In order to couple the solid and fluid parts we must
prescribe compatibility conditions that are basically
instantaneous equilibria conditions for the forces in
the fluid/body interface. Denoting by ζ(t) the posi-
tion of the geometrical center of Bt, we must have

Mζ ′′(t) = −
∫

γ
σ · n +

∫
Bt

f b (8)

Jω′(t) = −
∫

γ
(x− ζ(t))⊥ ·σn +

∫
Bt

(x− ζ(t))⊥f b

(9)
where M and J are the (constant) mass and mo-
mentum of inertia of Bt, given by M =

∫
B ρb and
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J =
∫
B = ρb|x − x0|2, ρb is the density of the body

and f b are the external body forces exerted on Bt.

2.3 The coupled problem

The fully coupled fluid–rigid body interaction prob-
lem consists in finding u, p, ω and U such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
Du

Dt
= ∇ · σ + f

in Ωt

σ = −p I + η(γ̇)(∇u + (∇u)T )

∇ · u = 0 in Ωt

u = 0 on Γ
∇u + (∇u)T = 0 on γ

(10)
and the compatibility conditions (8) and (9) hold. We
remark that the constitutive equation for the stress ten-
sor does not need to be of this particular form and,
as long as τ can be computed, more complex fluids
(e.g. viscoelastic fuids) can be considered without any
changes in our method.

3 Weak formulation

Having in mind the discretization by finite elements,
we write the problem in a variational form. Let us con-
sider the function spaces V = H1

0 (O)2 and Q = {q ∈
L2(O) :

∫
Ω q = 0}. Multiplying the fluid equations

by test functions v ∈ V and q ∈ Q and integrating by
parts over Ω we obtain

∫
Ω

ρf
Du

Dt
· v +

∫
Ω

τ : ∇v −
∫

Ω
p∇ · v =

∫
Ω

f · v +
∫

∂Ω
v · (σ · n), ∀v ∈ V

∫
Ω

q∇ · u = 0, ∀q ∈ Q

We now consider the space of rigid motions over B,
KB = {v ∈ V : ∇v + (∇v)T = 0, in B}, take into
account the compatibility and boundary conditions,
and rewrite the variational formulation introduced
above as follows:

for every t > 0, find u ∈ KB and p ∈ Q :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
O

ρ
Du

Dt
· v +

∫
O

τ : ∇v =

∫
O

p∇v +
∫
O

v · f , ∀v ∈ KB

∫
O

q∇u = 0, ∀q ∈ Q

(11)

where ρ = ρfχΩ + ρb(1 − χΩ) and f is extended
by zero outside B. We observe that formulation (11)
does not contain any boundary terms.

4 Discrete problem
The method of characteristics is used to discretize
the total time derivative. If we denote by Xn(x) the
characteristic associated with u then, at each time
step, the discretized problem reads:

find un+1 ∈ KBn+1 and p ∈ L2
0(O) such that:

1
∆t

∫
O

ρn+1un+1 ·v+
∫
O

(τn+1: ∇v−pn+1∇·v) =

1
∆t

∫
O

(ρnun)◦Xn ·v+
∫
O

fn+1 ·v, ∀v ∈ KBn+1

and ∫
O

q∇ · un+1 = 0, ∀q ∈ Q

where, knowing un, Bn+1 is computed updating the
position of Bn, i.e. Bn+1 is the rigid body at time
tn+1. In fact, it is easier to use Un and ωn, that can
be computed from un. When B is a circle of radius r
we have

Ui =
1

πr2

∫
B

ui, ω = − 2
πr4

∫
B
(u−U)×(x−G).

If we make no assumptions on the shape of the body,
ω and U can still be computed by solving the linear
system⎧⎨

⎩
|B|U1 + α2ω =

∫
B u1

|B|U2 − α1ω =
∫
B u2

−α2U1 + α1U2 − α3ω = β
(12)

where α1 =
∫
B(x1 − G1), α2 =

∫
B(x2 − G2), α3 =∫

b ‖x−G‖2 and β =
∫
B((x1−G1)u2−(x2−G2)u1).

This problem is equivalent to the minimization over
KBn+1 of the functional
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Jn(v) =
1

2∆t

∫
O

ρn+1v2 +
∫
O

τn+1 : ∇v

− 1
∆t

∫
O

(ρnun) ◦X · v −
∫
O

fn+1 · v

and it will be solved within the theoretical framework
presented in the next section. At each time step the
problem must be discretized in space. This will be
done using a standard finite element method based on
a suitable meshing of the domain, that leads to the so-
lution of a linear system.

5 Abstract penalty method
The weak formulation (11) is called constrained since
the enforcement of rigid motion over B is embedded
in the functional spaces. The penalization approach
aims at relaxing this constraint which can be done in
an abstract setting. We next summarize the main re-
sults introduced in [7].
Let V be a Hilbert space with inner product (·, ·),
a(·, ·) a symmetric, bilinear continuous and coercive
form and ϕ ∈ V ′. Let us also define the functional
J(v) = 1

2a(v, v) − 〈ϕ, v〉.

Proposition 1 Let K be a subspace of V . The con-
strained minimization problem

(P )

{
Find u ∈ K such that
J(u) = inf

v∈K
J(v) (13)

has a unique solution characterized by

a(u, v) = 〈ϕ, v〉, ∀v ∈ K (14)

and the following estimate holds

|u| ≤ 1
α
‖ϕ‖.

Consider now a bilinear, symmetric and positive form
b(·, ·) such that K = {v ∈ V : b(v, v) = 0}. For all
ε > 0 we consider the unconstrained minimization
problem (Pε) of the functional

Jε(v) = J(v) +
1
ε
b(v, v),

that has also a unique solution uε ∈ V . The following
result holds

Theorem 2 The sequence (uε) of solutions of prob-
lem (Pε) converges to the solution u of problem (P ),
in V .

Sketch of the proof: If we write the variational for-
mulation of (Pε) and substitute v by uε, using the
fact that b(·.·) is a positive form together with Propo-
sition 1, it can easily be shown that the sequence
(uε) is bounded and therefore there is a subsequence
converging to z ∈ V . On the other hand, since
J(uε) ≤ Jε(uε) ≤ Jε(u) = J(u) we also have
J(z) ≤ lim infJ(uε) ≤ J(u). In particular, since
Jε(uε) ≤ J(u), we have

1
ε
b(uε, uε) ≤ J(u) + ‖ϕ‖V ′ |uε| ≤ C (15)

and therefore b(uε, uε) → 0 which, together with
0 ≤ b(z, z) ≤ lim inf b(uε, uε) means that z ∈ K
(because b(z, z) = 0) and consequently z = u. The
same argument can be applied to any convergent sub-
sequence and so we prove weak convergence of uε to
u. Proof of strong convergence is straightforward us-
ing the norm associated to the scalar product induced
by a(·, ·).

Proposition 3 Denoting by C and α the continuity
and coercivity constants of a(·, ·), the following es-
timate holds,

|uε − u| ≤
√

C

α
dist(uε,K).

Only making further assumptions on b(·, ·) we can ob-
tain a more usable error estimate for the penalized so-
lution. The following proposition gives sufficient con-
ditions for linear convergence.

Proposition 4 If we further assume that b(·, ·) is of
the form b(u, v) = (Ψu,Ψv), with Ψ linear, contin-
uous and with closed range over a Hilbert space Λ,
there exists a constant C > 0 such that

|uε − u| ≤ Cε.

5.1 Hyper-viscosity unconstrained formula-
tion

The abstract penalty method already introduced can
be applied to problem (11), recognizing that the space
KB is the kernel of the operator

b(u,v) =
∫

B
(∇u + (∇u)T ) : (∇v + (∇v)T )

Instead of solving (11) in the constrained space KB ,
we will solve the penalized unconstrained problem
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For every t > 0, find u ∈ KB , p ∈ Q :∫
Ω

ρ
Du

Dt
· v =

∫
Ω

(τ : ∇v + p∇v + f · v)

− 1
ε

∫
B

Du : Dv, ∀v ∈ V

∫
Ω

q∇u = 0, ∀q ∈ Q

that is equivalent to the unconstrained minimization
of the functional

Jn
ε (v) = Jn(v) +

∫
B

Dv : Dv.

Convergence when ε → 0 is guaranteed by Propo-
sition 4. The main advantage of relaxing the rigid
motion constraint is the possibility of using standard
fluid solvers (with minor changes), avoiding heavy
programming tasks. The name hyper-viscosity arises
from the fact that, in the Newtonian case, the penalty
term is the stiffness operator restricted to B and mul-
tiplied by a factor of 1/ε. Since the leading coefficient
of the global stiffness operator is the viscosity, the ap-
plication of this method results in an increase of the
viscosity over the B, by a factor of 1/ε.

6 Numerical results
The hyper-viscosity method was implemented using a
general finite element solver/programming language
called Freefem++ (see [4]). The code accepts arbi-
trary 2D geometries for the domain and the body. We
will present a simple numerical simulation that tests
the angular velocity reported by the method, which is
the most sensitive unknown. The parameters used in
the simulation are those appropriate to model blood:
η0 = 0.022Pa s, η∞ = 0.0022 Pa s, λ = 0.11 s,
a = 0.664 and n = 0.392 (see e.g [2]). In this sim-
ulation the computational domain is a circle of radius
3 and the particle is a circle of unit radius, initially
placed at the center of the domain.This is the 2D ana-
log of flow between concentric cylinders. At time
t = 0 the outer boundary is set to move at constant
angular velocity. Due to the no-slip boundary con-
dition, the fluid starts a rotating movement to follow
the outer boundary, also inducing the motion of the
particle. The particle is initially at rest and starts an
increasingly faster rotation until it reaches a terminal
angular speed ω < ωwall, without any translation. In
figure 3 we show the time evolution of ω for different
values of the power index n. The stronger line cor-
responds to the Newtonian fluid (n = 1). Above this
curve we find the curves obtained for shear-thickening

fluids (n > 1) and below those obtained for shear-
thinning fluids (n < 1).
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Figure 3: Angular velocity for several values of
the power index (n = 2.2, 1.8, 1.5, 1, 0.5, 0, −0.5,
from left to right)

We observe that for all values of the power index the
same terminal angular velocity is achieved for the par-
ticle. However, the higher is the power index, the
faster is the convergence. The curves in figure 3 can be
used to design a simple Couette viscometer to identify
the power index of the fluid.
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Figure 4: Distance from the center of the particle to
the center of the domain.

In figure 4 we observe that, apart from rotating, the
body also suffers a translation, describing a small or-
bit around the center of the domain which is due to
numerical instabilities. This problem becomes rele-
vant after a relatively large number of time steps, but
can be arbitrarily delayed using finer meshes.
Finally figures 5 and 6 show some plots illustrating
the evolution of the streamlines and shear-dependent
viscosity, from the transient to the steady-state period.
We observe that the streamlines initially concentrated
near the outer boundary become equally distributed
when the steady state is reached which is due to the
constant angular velocity reached by the whole fluid.
The same behaviour occurs with the shear-dependent
viscosity.
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Figure 5: Evolution of the streamlines (t =
0.1, 1.5, 4, 20 s).

(a) (b)

(c) (d)

Figure 6: Evolution of the shear–dependent viscosity
(t = 0.1, 1.5, 4, 20 s).

7 Conclusions

A hyper-viscosity method has been derived and used
to solve numerically fluid-rigid body interaction prob-
lems, in the case of a generalized Newtonian fluid.
The convergence of the penalization procedure has
been proved and numerical tests were carried out,
showing differences between the Newtonian and non-
Newtonian fluid behaviour related to the computation

of the angular velocity.
The main advantage of this method is the possibil-
ity of using, with minor adaptations, widely available
finite element packages and solvers for the Navier-
Stokes equations.
Future work includes the derivation of sharp error es-
timates that can explain the observed rates of conver-
gence and the extension of this method to viscoelastic
models like Oldroyd-B or shear-dependent Oldroyd-B
fluids.
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