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1  Introduction      
Many complicated questions of the analysis, design 
and development of plastic forming manufacturing 
methods remain underinvestigated. Plastic deforma-
tion processes in which the work material is under 
three-dimensional axisymmetric strain conditions 
and compound loading with strong stressed state 
(stress phase) variation are especially difficult for 
the analysis and design [1, 2]. The technological 
capabilities analysis with computerization and pre-
diction of finished products properties in non-steady 
plastic forming processes under axisymmetric strain 
conditions require using the reliable methods of spa-
tial stress and strain field analysis from the point of 
view of fast convergence and split-hair accuracy. 
Many problems of technology design such as justi-
fied selection of type and number of forming and 
concurrent operations, processing conditions, reli-
able tool strength provision, are related to the analy-
sis of distribution of stresses, flow velocities and 
strains in produced metalware. 
 

 
2   Problem Formulation 
Axisymmetric plastic forming of materials in manu-
facturing processes of plastic working is described 
in cylindrical coordinate system θ,, zr  by the fol-
lowing equations [1] 
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where rσ zσ θσ , rzτ  - nonzero components of the 
stress tensor; sτ  - a shear yield point of the mate-
rial; λ  - a positive scalar proportional to plastic de-
formation power; rv , zv  - components of the vector 
of plastic yielding velocity ; ( ) ( )ee DIDI 32 ,  and 

( ) ( )σσ DIDI 32 ,  - square and cubic invariants of 

strain rate deviator eD  and stress deviator σD  ac-
cordingly. 

A difficulty of the analysis of metal plastic form-
ing processes with axisymmetric stress and strain 
fields is concerned with a lot of sought parameters 

rσ , zσ , θσ , rzτ , rv , and local static indefinability 
of the equations system (1) - (5). The prevailing re-
ceptions to overcome these difficulties are a diminu-
tion of unknown stress and velocities components 
number (a condition of plane deformation, an as-
sumption that some stresses or velocities compo-
nents are known). The analysis methods based on a 
strong simplification of the main equations can lead 
to a loss of qualitative properties of the solutions. 

Many technological problems of axisymmetric 
deformation are solved with the use of the hypothe-
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sis about complete plasticity [2, 3] which allows to 
obtain a statically definable set of equations. The 
assumption concerning full plasticity fixes a phase 
of the monoaxial stressed state. The similar condi-
tion is precisely fulfilled on a symmetry axis, and, 
generally speaking, approximately in all plastic area. 

G. Lipman [4] used instead of Haar-Carman 
condition another condition: intermediate (by value) 
principal linear component of strain rate 02 =e . By 
the law of flow it leads to a statically definable 
problem. 

A finite element method, being actually grid-
variational, is prevailing for the analysis of plastic 
working technological problems. When using the 
finite element method the main difficulties arise 
from basic equations nonlinearity and necessity of 
realization of incompressibility condition. A number 
of approaches are used for overcoming these diffi-
culties. For example, flow function introduction al-
lows to meet identically an incompressibility condi-
tion and to simplify a statement and solution of aris-
ing variational problems. Other approach is a gen-
eration of the equations for finite elements by means 
of Bunyakovsky-Schwarz inequality. A review of 
the scientific works shows that the finite element 
method is effective for a kinematic analysis and 
definition of related technological parameters. How-
ever, the detailed analysis in stresses without solu-
tion of differential equilibrium equations is prob-
lematic as the use of only nonholonomic connec-
tions between strain rates and deviator components 
of stresses does not enable determining a spherical 
tensor of stresses. 

 
 

3  Problem Solution 
 
3.1   Construction of basic solution 
For the analysis and mathematical modeling of axi-
symmetric plastic forming processes with a strong 
stress and strain rate phase variation it is necessary 
to use a method based on construction of basic solu-
tion in stresses and velocities and guided to exact 
solving of iterative process. For constructing of the 
basic solution it is expedient to temporarily add a 
property of local static definability to the basic 
equations system (1) – (5), for example, by using a 
side condition in stresses. The similar approach was 
applied when solving the axisymmetric problems by 
fixation of stress and strain rate phase. 

The use of the "rigid" side condition fixing a 
stress and strain rate phase for construction of the 
basic solution can lead to greater difficulties when 
providing a similarity condition (4) for stress and 
strain rate deviators. Therefore, the use of "flexible" 
side condition non-limiting a phase of stresses and 

strain rates in basic solution is more effective. Side 
conditions should be universal, invariant concerning 
medial stress, and should allow to use the known 
solutions and experimental information for the 
analysis of technological problems. 

Let's present components of the stress tensor in 
the following parametric form [1]. 
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where θϕ , θmmm zr ,,  - parameters introduced by 
the following relations 
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σD  – directing deviator,  sign – sign function. 
 The component αβτ  represents a principal shearing 
stress in a meridional plane, and parameter θδ  - an 
angle which is count off from an axis r up to the 
first direction of stress αβτ  action. Directions of 
stress αβτ  action form two sets α  and β  of interor-
thogonal glide lines. 
The parameter θϕ  (or θδ ) determines a direction of 
the normal to octahedral plane, and parameters im  - 
orientation of the vector of shearing octahedral 
stress. 

In many processes of deforming of axisymmetric 
articles a linear dimension a of plastic area in radial 
direction is known depending on natural boundary 
conditions. It allows to establish a side condition for 
the parameter θm  determining in coordinate frame 
α , β  a ratio between meridional maximum shear-
ing stress and shear yield point. We shall introduce a 
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characteristic dimension αra  for sections of the 
plastic area, where αr  - a radial coordinate of the 
section. On the symmetry axis, i.e. when αra = 1, 
where monoaxial condition is realized, a component 

sτ=ταβ )23( . A condition close to simple shear 
is realized in plastic area sections outlying from the 
symmetry axis, where 1<<αra , and the compo-
nent sτ=ταβ . With decrease of  αra  the material 
state verge fast towards simple shear. Therefore, 
connection of the component αβτ  with the magni-

tude αra  is presented by exponential law, and the 
dependence (8) assumes the following form 
 


















 −










−−δ+δ= θθθ a

r
tgm a1exp

2
3112

3
212cos 2 ,(11) 

 
which used as a side condition in the sequel. 

 
Equilibrium equations (1) subject to the paramet-

ric mode (6) assumes the following form in coordi-
nate frame βα,   
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The differential equations (1а, b) relate to hyper-
bolic type and have two sets of mutually orthogonal 
characteristics.  

  θδ= tg
dr
dz  (lines α ), θδ−= ctg

dr
dz  (lines β ). (12) 

 
The velocity equations (3) and (5) have characteris-
tics (12) and are written in the fixed coordinates sys-
tem *α *β  coinciding with paths α , β  as follows 
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3.2   Construction of iterative process 
The equations (1а, b), (9a), (10а) and a side condi-
tion (11) form a locally definable set of equations 
concerning five required components σ , θδ , αm , 

βm , θm . Two velocity relations (3a), (5a) form a 
closed system relative to two required components 
of velocities ** ,

βα
vv . The solution of these subsys-

tems allows to map two positions of generatrix for 
each node of plastic area ( 11NM   and 22NM ) at 
the cylindrical surface of yielding flow in the space 
of principal stresses 321 ,, σσσ  (Fig.1), one of 
which corresponds to admissible stresses, and an-
other - to admissible velocities. 

The generatrix MN position corresponding to ex-
act solution is between segments 11NM  and 

22NM . Therefore, the iterative process directed to 
exact solution can be interpreted as counterrotation 
of generatrixes 11NM  and 22NM  around a hydro-
static axis σ−=p  until the condition (4) of phase 
coincidence of deviators eD  and σD  is satisfied 
with given accuracy. 

Thus, the phase coincidence condition (4) is con-
sidered as a differential relation which should be 
satisfied by exact solution. From this point an ad-
vantage of Mises cylindrical surface selected as a 
loading surface is becoming obvious. Generatrix 
movement on yielding surface under compound 
loading can be interpreted as its hydrostatic axial 
rotation in the space of principal stresses, i.e. a 
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phase change of the stress and strain rate deviators. 
Hence, each plastic particle of deformable material 
is mapped by generatrix moved on some surface f = 
0 under complicated loading, in case of Mises con-
dition (2) - surfaces of a square invariant of the 
stress deviator. The similar image of the deforma-
tion process conforms to principles of the deforma-
tion locality theory [5] considering it as the outcome 
of the action of elementary mechanisms (sliding, 
twinning, etc.) in a discrete polycrystal structure. 

 
Fig.1  Mapping of solution in stresses and velocities 
in the space 321 ,, σσσ  
 
 
3.3   Solution of applied problem 
Let's consider a process of indirect cold extrusion of 
the hollow cylindrical detail from solid blank. The 
mild scheme of stressed state (σ / sτ < -1) under ex-
trusion promotes high plasticity of the worked mate-
rial and, accordingly, greater operational strain ex-
tents. High hydrostatic pressure (p = -σ) in plastic 
area of strained material promotes deformation mi-
croflaws healing and damage level reducing for the 
finished articles in comparison with manufacturing 
operations with the stiff scheme of stressed state 
(σ/ sτ  > 0). Therefore, the exact information on aris-
ing technological stresses and yielding flow veloci-
ties of the strained material is important for predic-
tion of its structural properties [6]. 

Let's analyze stresses and velocities at the clos-
ing stage of extrusion when deforming tool load 
amounts to the largest value (Fig. 2, 3). 

When solving boundary value problems the con-
vention kτ  = αβτ  of ultimate contact friction on the 
end surface of the punch and back surface of the 
container is made. Deformed metal normal pressure 
on the lateral surface of the container is much less 
than on the back surface. Therefore, a condition of 
non-ultimate contact friction is realized on the lat-
eral surface of the container. 

 
 

Fig.2 Paths βα,  field of maximum shearing stresses 
in the plastic area of strained half-finished product 
 

 
Fig. 3   Paths βα,  mapping in velocity plane  
(velocity field) 
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According to the experimental data on detection 
of paths of maximum shearing stresses (by means of 
the method developed by A. Fri) glide lines (set α) 
approach to the lateral surface of the container at the 
angles of 54...570 and are reflected from the contact 
surface (as lines of set β) at the angles of 33...360. 
The established field of glide lines defines a direct-
ing deviator of stresses σD . 

Values of shear yield point ( sτ ) calculated in 
nodes and average stress (σ ) allow to evaluate the 
deviator and the spherical tensor of stresses. The 
field of velocities is determined on the basis of nu-
merical solution of the equations (3а), (5а) for speci-
fied boundary conditions. 

Degree of conformity between fields of stresses 
and velocities is established by means of differential 
connection (4) in the form eω  – σω  ≤ [∆ω], where 

eω , σω  – phase angles of deviators eD  and σD , 
[∆ω] – a permissible error in definition of phase an-
gle. Error ∆ω = eω  – σω  is evaluated in character-
istic points of plastic area m.n. Thus, the iterative 
process directed to exact solution is reduced to the 
inequality 

 
∆ω (m.n) ≤ [∆ω].   (13) 

 
For solution of the inequality (13) the method of 

group relaxation is used. By regulating of the abso-
lute value of discrepancy between parameters ( )σ

θm  

and ( )emθ  in the selected nodes (instead of its com-
plete liquidation at the first stage) it is obviously 
possible to ensure the inequality (13) with a permis-
sible error [∆ω] = 0,05 radians already at the first 
correction. The calculated field of paths of maxi-
mum shearing stresses (stress field) (Fig.2) and the 
field of yielding flow velocities (Fig.3) satisfy the 
inequality (13) at [∆ω] = 0,05 radians. 
 
 
4   Conclusion 
Let's consider the solution results. A kind of the 
stressed state varies within the limits of plastic area  
 
 
 

from monoaxial compression on symmetry axis to 
simple shear around a clearance between the punch 
and the container. It allows to consider an effect of 
all stress deviator invariants on technological plas-
ticity of the material. The normal pressure diagram 
(Fig. 2) indicates non-uniform distribution of local 
loads on the contact end surface of the punch. 
Maximum pressure on the punch contact surface 
around symmetry axis amounts to (11…12) sτ  at the 
closing stage of extrusion that leads to a necessity of 
using high-strength deforming tools. Fields of yield-
ing flow velocities defined at stages of deforming 
process enable predicting a volume distribution of 
strains of finished articles as well as mechanical 
properties of their materials. 
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