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Abstract: TirepaReGialconcerned with a numerical study of steady fully developed second-grade flows in a curved
pipe of circular cross-section and arbitrary curvature ratio, driven by a pressure drop. The qualitative behaviour of
the secondary flows is analyzed with respect to inertia and viscoelasticity effects.
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1 Introduction

Fully developed viscous flow in a curved pipe with cir-
cular cross-section was first studied theoretically by
Dean ([7], [8]) applying regular perturbation meth-
ods. He showed that for small curvature ratio the
flow depends only on a single parameter, the so-called
Dean number In [12], Soh and Berger solved the
Navier-Stokes equations for the fully developed flow
of an homogeneous Newtonian fluid in a curved pipe
of circular cross-section for arbitrary curvature ratio.
They solved numerically the Navier-Stokes system in
the primitive variables form using a finite difference
scheme. Closed form perturbation solutions for a sec-
ond order model were obtained by several authors in
the special case where the second normal stress coef-
ficient is zero.

For this model, Jitchote and Robertson [10] obtained
analytical solutions to the perturbation equations and
analyze the effects of non-zero second normal stress
coefficient on the behaviour of the solution. Theo-
retical results regarding this problem using a splitting

with boundaryo$2, constant circular cross—sectifg
of radiusr with the line of centers coiled in a circle of
radiusR (see Figure 1).

Figure 1:Polar toroidal coordinates in a curved pipe.
The corresponding equations are given by

—pAu — d1u -VAu +pu -Vu+ Vr=V- L(u)
V-u=0, inQ
u =0, onof

whereu is the fluid velocity,r is the pressurey is

method were obtained by Coscia and Robertson [6].

Our aim here is to apply the finite element method to
the second-grade model for fully developped flows in
a curved pipe and analyze the non-Newtonian effects
of the flow. Quantitative and qualitative behaviour of
the axial velocity and the stream function of creep-
ing and inertial second-grade fluids are also studied.
Similar and other techniques have been applied to dif-
ferent non-Newtonian models (see [2], [3], [9], [11]).

2 Governing equations

We consider steady isothermal flows of incompress-
ible second-grade fluids in a curved pife Cc IR3

the viscosity,p is the constant density; anda; are
the Rivlin-Ericksen material constants, ah¢u) is a
nonlinear term given by
L(u)=a; Vu!(Vut+Vu?) +(a; +as)(Vu+vu?) 2,
We consider an adimensionalised formulation of
the previous system by introducing the following
quantities

ou=g T=

where the symbol ™ is attached to dimensional
parameters{{ represents a characteristic velocity of
the flow). We also introduce the Reynolds number
Re and two non—dimensional ratios involving the
constant material modudi; andas,

X =
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The dimensionless system takes the form

—Au—aju-VAu+ Reu-Vu+ Vr=V-L(u)
V-u=0
u=20
1)
with

L(u) =1 Vu' (Vu+Vu’) + (a1 +as)(Vu+Vu®) 2,

System (1) can be rewritten in the following equiva-
lent form involving a Stokes system and a transport
equation,

—Au+Vp=o

V-u=0

u=>0

o+aju-Vo=V-(L(u)—Reu® u—a;pVu’),

(2)
where the new variablgis given byr =p+aju-Vp.
Throughout the paper, we consider the particular case
of a; + a9 = 0, corresponding to a thermodynamical
compatibility condition. For a more detailed analysis
of this problem see [5].

3 Formulation in polar toroidal coor-
dinates

Since we are interested in studying the behaviour of
steady flows in a curved pipe with circular cross-
section, it is more convenient to use the polar toroidal
coordinate system, in the variablés 6, s), defined
with respect to the rectangular cartesian coordinates
(z, 9y, z) through the relations

T = (R+rcosb) cos}%,

y = (R+T7cosf)sin %, Z =7rsiné,

with 0 < 79 <R,0§5< 2m and0 < 5 < 7wR.
Introducing the axial variable and the pipe curvature
ratio

—E — ro
S_To’ 5_R’

the corresponding non-dimensional coordinate system
is given by

z = (3 + rcosf) cos(sh),

y = (3 +rcos0) sin(sé), z=rsinb,

withd < 1,0 <0 < 2rand0 < s < 5- Letus now
formulate problem (2) in this new coordinate system.
To simplify the notation we set

(1 =rdsinb, B2 = B2(r,0) = 1d cos b,

B =p(r,0) =1+rdcosb.

Since we consider fully developed flows, the compo-
nents of the velocity are independent of the variable

i.e.
Os — 0s — Os (3)

Consequently the axial component of the pressure gra-
dient is a constant and the stress tensor is also inde-
pendent of the variable

Q

D * or

9s — P, gzo-

(4)

Taking into account (3)-(4) and using standard argu-
ments, we rewrite problen2{ in the toroidal coordi-
nates(r, 0, s). This problem is defined in the (bidi-
mensional) set

S={(r0)eR*|0<r<1,0<6<2r},

and reads as follows

Find (u = (u,v,w),p, 5 = (r3)* o) solution of

Au + (ﬂQ +522) u—G1(B+ P2)v+ 262 v
(Tﬁ)Qaf =01
Av+ (8% + B3) v+ B1(B — Bo)u — 26 G4
—|—7“ﬁ2 0 — 0'2

Aw + (rd)?w — r?Bp* = 53

95,

+ Bv

Fi(uapa a-)

rBo; + o (rﬂu 6‘71)

)
fori=1,2,3, with
Ap=—rB5 (rB5) ~ 63 (05)
and
Fi(u,p,5)=(rB)*(V: (L(u)—a1pVu’)),
+aq (2 (ﬂ + ﬂg)ual — 261vo1 + PBvog + ,6211)(/7\3)
Fy(u,p,5) = (r8)* (V- (L(w)—a1pVu’)),
+1(2 (B + fo)uds — 261002 — o1 — Brwds)
F3(u,p, &)= (rf)*(V- (L(w)—a1pVu")),
+a1(2 (6 + B2)uos — 261053+ B1wos — fowd)
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4 Numerical results

We use finite element methods to obtain approximate
solutions to system (5). The numerical algorithm is
based on Newton’s method, with the non-linear part
explicitely calculated at each iteration step. As indi-
cated in Figure 2, a Stokes system is solved fop),

a Poisson equation is solved for the axial veloeity
and a transport equation fer. The velocity is set to
zero on the lateral surface of the pipe.

INITIALIZE 0
DISCRETE STOKES
DISCRETE POISSON

‘ DISCRETE TRANSPORT ‘

Figure 2:Algorithm.

In order to study the non-Newtonian effects of the
flows, we compare the quantitative and qualitative be-
haviour of the axial velocity and the stream function of
both creeping and inertial flows of second-grade flu-
ids. Using a continuation method on the characteris-
tic parameters (the Reynolds numl#es and the vis-
coelastic parameter;), we obtain numerical results
in different flow situations.

Introducing an adimensionalised stream function
we obtain the following identities for the velocity
u = (u,v),

@l
e

4.1 Newtonian flows

It is interesting to compare the qualitative behaviour
of the flow for second-grade fluids with that of New-
tonian fluids. For these purposes, we first consider
typical contours of the axial velocity and of the stream
function in the case of Newtonian fluids. In the case of
creeping fluids Re = 0), a Poiseuille solution is dis-
played for a small curvature ratié € 0.001). There

is no secondary motion and the contours of the ax-
ial velocity w are circles, centered about the central

axis (see Figurg,). In contrast, as can be seen in
Figure3;, the contours are shifted away from the cen-
ter towards the inner wall when the curvature ratio in-
creases.

b

(2)d = 0.001

(b) 6 = 0.5

Figure 3:Axial velocity for creeping Newtonian flow.

As already known, for inertial Newtonian fluids
(Re # 0) a slight curvature of the pipe axis induces
centrifugal forces on the fluid and consequently sec-
ondary flows, sending fluid outward along the sym-
metry axis and returning along the upper and lower
curved surfaces. A pair of symmetric vortices is then
superposed to the Poiseuille flow. This can be seen
in Figure4, where we contours of the axial velocity
and the stream-function are presented Ry = 1
ando = 0.5. The solutions obtained with FEM and
Robertson’s perturbation method show a good agree-
ment, in accordance with the predictions. In particu-
lar, for this value of the curvature ratio, we can ob-
serve a shift from the center. The secondary flow
is counter-clockwise in the upper half of the cross—
section and clockwise in the lower half.

Figure 4: Streamlines and axial velocity for Newtonian
flows withRe=1 andd=0.5.

4.2 Creeping viscoelastic flows

In this section, we are interested in the viscoelastic be-
haviour of the fluid in the case of creeping flows, and
especially in the behaviour of the secondary motions.
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Our numerical results (using the FEM) indicate

changes in the flow characteristics and suggest that at of the viscoelastic constaiat; (o

zero Reynolds number, fluid viscoelasticity promotes
a secondary flow. This phenomenon is also evident
in the more general case of second-order fluids (with
ai + ag #0).

In Figure 5 and Figure6, the streamlines are plot-
ted for two distinct values ofv;. As in the case of
the inertial Newtonian flow, the secondary flows in-
volve non-zero values and are characterized by two
counter-rotating vortices. However, their behaviour is
not similar. In particular, the orientation of the con-
tours of the stream function is opposite. As can be
exepected, the magnitude of the secondary flows in-
crease with the elastic level. Moreover, we observe
that the flows remain symmetric relative to an axis
which is identical to the pipe centerline flar; | small

(a1 = —1072), and which slightly rotates counter-
clockwise wherja; | increasesd; = —0.5).

Figure 5: Streamlines and axial velocity for creeping vis-
coleastic flows withh =0.2 anda; = —0.01.

Figure 6:Streamlines and axial velocity for creeping vis-
coleastic flows withh=0.2 anda; = —0.5.

4.3 Inertial viscoelastic flows

Now, we are concerned with second-grade fluids
where the Reynolds numb&e is non-zero and set
to 1.

We first consider a pipe with a small curvature ratio
§ = 1073. A comparison between our finite ele-
ment solutions and Robertson’s perturbation solutions

shows a very satisfactory agreement for a small value
—1072). The
secondary flows exist and have globally the same be-
haviour. At this stage, the nature and magnitude of the
flow is qualitatively identical to that of a Newtonian
fluid, the inertial effect being more pronouced and no
effect due to viscoelasticity appears. The same be-
haviour can be observed for higher values of the cur-
vature ratio.

When || increases, the solution obtained by FEM
shows reversal flows whose nature is very close to
that obtained in the case considered in the previous
section when the secondary motion was generated by
fluid viscoelasticity (see Figurg.

Figure 7: Streamlines and axial velocity for inertial vis-
coleastic flows witiRe=1, §=0.2, a; =—0.5.

4.4 Effect of the viscoelasticity

Based on the remarks made in the previous sections,
we now point out the influence of viscoelasticity in
determining secondary flows. Our aim is to show that
when the viscoelastic level increases, a transition from
the Newtonian regime to a viscoelastic one occurs.
The analysis was carried out for a Reynolds number
set to one and the curvature ratio sedtb. Figure 8
presents the streamlines for different valuesvofin

the interval[—0.01; —0.25]. Fora; = —0.01 we are

still in the Newtonian regime. Two counter-rotating
vortices appear, and the streamlines in the core region
are more dense than elsewhere. However, in Figure
8, a slight modification is already visible with the dis-
placement of the vortices towards the inner wall. As
a1 increases, these facts become more pronounced.

The valuea; = —0.05 seems to be critical. The dis-
tortion of the streamlines is even more dramatic, and
in addition to the vortices described below, another
couple of vortices appear in the core region (see Fig-
ure 8.). Interestingly, the values in this part of the
cross-section have an opposite sign to the ones near
the boundaries, suggesting that the core is the tran-
sition region and that the reversal from one state to
another initiates there.
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Figure 8:Effects of the viscoelasticity on the streamlines
with Re = 1 andd = 0.5.

This is confirmed by the results obtained for the cases
wherea; = —0.07, —0.09, —0.1, showing that the re-
versal secondary flows grow around the new couple
of vortices and that the changes occur from the core
region to the regions near the boundary. It is clear
that the size and strength of the new pair of vortices is
more important, while a slackening of the streamlines
and vortices corresponding to the Newtonian state is
observed.

In Figure 8, the transition from one regime to the
other is completed. Finally, fa; = —0.25 due to

the combined effect of curvature and viscoelasticity,
we observe a slight displacement of the center of the

nuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp79-84)

vortices to the outer wall.

4.5 Effect of the inertia

In the previous section, we observed that for fixed

Reynolds number and curvature ratio, an increase of
the viscoelastic parametgr; | induces a modification

in the nature of the flow, passing from the Newtonian

regime into the purely viscoelastic one. Our aim here
is to consider the reversal phenomenon. Fixing the pa-
rametersy; andd, we study the effect of fluid inertia.

(@) Re =3.0 (h) Re = 4.0

Figure 9: Effects of the inertia on the streamlines with
a1 = —0.1 andé = 0.5.

Settinga1=—0.1 and 6=0.5, we present in Figure 9
the contour plots of the stream function for different
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values ofRe in the interval[0.5, 4].

ForRe = 0.5, the viscoelasticity is dominant and the
inertial forces have no real effect on the secondary
flows. ForRe = 1, some modifications occur. The
streamlines in the core region appear to be less dense,
the size of the couple of vortices is smaller, the flow
is driven near the wall pipe. Moreover, we observe
the formation of boundary layer flows, with a pair of
weak and elongated vortices.

As Reynolds number increases, the boundary layer
flows increase rapidly. The vortices in the core region
are weaker, while the streamlines near the pipe wall
are more dense and distorted, and a strenghthening
of the new vortices becomes clear. There is evidence
that in contrast with the case where the viscoelasticity
dominates, the wall pipe here is the transition region
from the viscoelastic state to the inertial one, and that
the reversal flows, formed near the boundary around
the new vortices, develop and drive the flow to the
center of the pipe.

5 Conclusion

This paper is devoted to finite element simulations of
steady fully developed flows of second-grade fluids
in curved pipes of circular cross section and arbitrary
curvature ratio, driven by a pressure drop. The quali-
tative behaviour of the secondary flows with respect to
the different parameters of the problem was analyzed
to study the corresponding inertial and viscoelastic
effects. The numerical results have been validated
through the comparison with those obtained by using
a perturbation method [10]. Details can be found in
[5]. A more complete discussion will the object of a
forthcoming work.
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