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Unsteady flow of Oldroyd-B fluids in an uniform
rectilinear pipe using 1D models
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Abstract: Using the one-dimensional approach based on the director theory which reduces the exact three-
dimensional equations to a system depending only on time and on a single spatial variable, we analyze
the axisymmetric unsteady flow of an incompressible viscoelastic fluid of Oldroyd type in an uniform
rectilinear pipe with circular cross-section. From this system we obtain the relationship between average
pressure gradient and volume flow rate over a finite section of the pipe and the corresponding equation
for the wall shear stress. Attention is focused on the steady flow case with rigid and impermeable walls.
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1 Introduction

In this paper we introduce a 1D model for vis-
coelastic non-Newtonian Oldrody-B flows in an
axisymmetric pipe with circular cross-section,
based on the director approach (Cosserat the-
ory) with nine directors developed by Caulk and
Naghdi [5]. The theoretical basis of this ap-
proach (see Cosserat [6], [7], based on the work of
Dubhen [8]) is to consider an additional structure of
deformable vectors (called directors) assigned to
each point on a space curve (the Cosserat curve).
With this approach and integrating the axial com-
ponent of linear momentum for the flow field over
the pipe cross-section, the 3D system of equa-
tions is replaced by a system of partial differen-
tial equations which, apart from the dependence
on time, depends only on a single spatial vari-
able. Using this one-dimensional Cosserat theory
we can predict some of the main properties of the
three-dimensional problem. For additional back-
ground information, we refer that the Cosserat
theory has been used in studies of rods, plates
and shells, see e.g. FEricksen and Truesdell [9],
Truesdell and Toupin [18], Green et al. [14], [13]
and Naghdi [16]. Later, this theory has been
developed by Caulk and Naghdi [5], Green and
Naghdi [15], and Green et al. [12] in studies of
unsteady and steady flows, related to fluid dy-
namics. Recently, the nine-director approach has
been applied to blood flow in the arterial system

by Robertson and Sequeira [17] and also by Cara-
pau and Sequeira (2], [3], [4], considering Newto-
nian and non-Newtonian flows, respectively.

In this paper we are interested in studying
the initial boundary value problem of an incom-
pressible homogeneous Oldroyd-B fluid model in
a straight circular rigid and impermeable pipe
with constant radius where the fluid velocity field,
given by the director theory, can be approximated
by the following finite series':

k
v =v+ Zwal...wal\,wal...am (1)
N=1

with
v = Ui(zv t)eiv WalmaN = Woiq...aN(zv t)ei' (2)

Here, v represents the velocity along the axis of
symmetry z at time ¢, z,, .. .Zq, are the polyno-
mial weighting functions with order & (the num-
ber k identifies the order of hierarchical theory
and is related to the number of directors), the
vectors W, o, are the director velocities which
are completely symmetric with respect to their
indices and e; are the associated unit basis vec-
tors. From this velocity field approach, we obtain

'Latin indices subscript take the values 1,2, 3, Greek
indices subscript 1,2. Summation convention is employed
over a repeated index.
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the unsteady relationship between average pres-
sure gradient and volume flow rate, and the cor-
respondent equation for the wall shear stress.

The goal of this paper is to develop a nine-
director theory (k=3 in (1)) for the steady flow
of an Oldroyd-B fluid in a straight pipe with con-
stant radius, to compare the average pressure gra-
dient for different values of both Reynolds and
Weissenberg numbers.

2 Model Problem

Let us consider a homogeneous fluid inside a cir-
cular straight and impermeable pipe, the domain
Q C R3, with boundary 09 composed by the
proximal cross-section I'y, the distal cross-section
I’y and the lateral wall Iy, see Fig.1.

Figure 1: Fluid domain © with the components of the
surface traction vector 71, 72 and p.. I'y, is the lateral wall
of the pipe with equation ¢(z,t), and I'1, I's are the up-
stream part and downstream districts of the pipe, respec-
tively.

Let x; (i = 1,2,3) be the rectangular Carte-
sian coordinates and for convenience set x3 = z.
Consider the axisymmetric motion of an incom-
pressible fluid without body forces, inside a sur-
face of revolution, about the z axis and let ¢(z,t)
denote the instantaneous radius of that surface
at z and time t. The components of the three-
dimensional equations governing an Oldroyd type
fluid motion are given in Q' = Q x (0, T) by?

ov* . %
P\gr T 0avi ) = tis
in Q, )
ti = —pFe; + 0ij€;j, t= 19:751',
Oc,. + A o = (v* —I—U*)
€ij 1 €ij /U/e i,j j7i )
2We use the notation vi; = 0v]/0r; and viv] =

v; Ov* /0z; adopted in Naghdi et al. [5], [11].

with the initial condition
v*(z,0) = vo(z) in £, (4)
and the boundary condition
v*(z,t) =0 on I'y x (0,7, (5)

where v* = v;'e; is the velocity field and p is the
constant fluid density. Equation (3); represents
the balance of linear momentum and (3)2 is the
incompressibility condition. In equation (3)s3, p*
is the pressure and o;; are the components of the
(symmetric) extra stress tensor given by

* *
0ij = pn (V75 +05) + ey,

where o, are the components of its viscoelas-
tic part. Here t denotes the stress vector on the
surface whose outward unit normal is U* = ¥} e;,
and t; are the components of ¢. In equation (3)4

the symbol geij represents the objective Oldroyd
derivative of the tensor o, given by (see e.g. [19])

v 00.ij L 00¢; . .
Op,. = v + Oeip (VF  — U3
€ij ot e elk( kg J’k)

— (v — Vi) Oens — a[(v;k + U} i) Ockj
+ Oeik ('U;;,j + ’U;k)} ; (6)

where a € [—1, 1] is a real given parameter. The
initial velocity field vg is assumed to be known.
Finally, u, = (uA2)/A1 is the Newtonian viscos-
ity and pe = p(1 — A2/A) = p is the elastic
viscosity, with 4 = p, + pe denoting the viscos-
ity coefficient, and the constants \; and Ay (with
0 < A2 < A1) being the relaxation and retarda-
tion times, respectively. Models with Ao = 0 are
called ”of Maxwell type” and those with Ay > 0
7of Jeffreys type”. Oldroyd-B fluids correspond
to Jeffreys type fluids with @ = 1 (in equation
(6)) and Oldroyd-A fluids correspond to a = —1,
see e.g. [10].

The lateral surface I',, of the axisymmetric
domain is defined by

¢2 = TaZa, (7)

and the components of the outward unit normal
to this surface are

o b
g =
d(1+¢2)"/? (1+¢2)"/? a

where a subscript variable denotes partial differ-
entiation. Since equation (7) defines a material
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surface, the velocity field must satisfy the condi-
tion
ot + ¢ v — TV, =0 (9)

at the boundary (7).

Let us consider S(z,t) as a generic axial sec-
tion of the domain at time ¢ defined by the spatial
variable z and bounded by the circle defined in (7)
and let A(z,t) be the area of this section S(z,1).
The volume flow rate @ is defined by

Qzt) = / vi(er, a2, 2, )da,  (10)
S(z,t)

and the average pressure p is defined by

1

p(z,t) = m/g(m)p (z1,x9,2,t)da. (11)

In what follows, this general framework will
be applied to the specific case of the nine-director
theory in a rigid pipe, i.e. ¢ = ¢(z). Using con-
dition (1), with k£ = 3, it follows from Caulk and
Naghdi [5] that the approximation for the three-
dimensional velocity field v* is given by

v o= [T 20
b [mal1- :”%;;”3)27?;3@}6
+ 73222 (1- :”%;;:C%)}eg (12)
where the volume flow rate Q(¢) is
Q) = 58 (2)vs(=.). (13)

We remark that the initial condition (4) is satis-
fied when Q(0) = ct. Also, from Caulk and Naghdi
[5] the stress vector on the lateral surface 'y, is
given by

r 1
Lo(1+ ¢2)1/2

- 72332(1+¢§)1/2> el
- 1 ) ¢
+ W (7'1!E2 2z — Pel2

+ mxi(1+ ¢§)1/2> e

ty, = (71$1¢z — Pel1

; (i 4d)]es (9

1
[(1+¢§)

where 11 represents the wall shear stress in the ax-
ial direction of the flow. Instead of satisfying the

momentum equation (3); pointwise in the fluid,
we impose the following integral conditions

*

/S(m) [tm - P(aaq; + v}vf)}da =0, (15)

/S(z,t) [tm - P(a;; + 'vfivfﬂ:nal o Zayda =0,

(16)
where N = 1,2, 3.
Using the divergence theorem and integration
by parts, equations (15) — (16) for nine directors,
can be reduced to the four vector equations:

&—i_f:av (17)

amal...aN

0z

where n, kN, m*1--%N are resultant forces

defined by

n:/tgda, Kk~ :/tada, (19)
S S

kP = /S (tazng —|—t5:13a>da, (20)

_|_la1...aN — kal...aN _|_ba1...aN’ (18)

kaﬁwz/ (ta;n5$7+t5:na:n7+t7:na:ng>da, (21)
S

O ON / t3T0, - . Tayda. (22)
s

The quantities @ and b*'""“N are inertia terms
defined by

a= Lp(a;: —I—'vfivf>da, (23)

*

0
bal...aN — Lp( a,vt —|—’vj<i’[);k>,:l}'a1 .. .,:UaNda, (24)

and f, [®1*N which arise due to surface traction
on the lateral boundary, are defined by

f= (1 n ¢§>1/2twds, (25)

as

1/2
]o1ON — / (1 + Qﬁ) twTay - - .:EaNdS. (26)
S

The equation relating the average pressure gra-
dient with the volume flow rate will be obtained
using these quantities (19) — (26).
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3 Results and Discussion

Replacing the solutions of equations (19) — (26)
into equations (17)—(18) the relationship between
average pressure and volume flow rate in a rigid
axisymmetric straight pipe with constant radius®
¢, is given by

pu(at) = 8‘;2 Q) - 3255 O
+ ¢2 (¢33) (;14 (33)
- g(?ﬂn) (;14 (@11)z,  (27)

where the functions 1);; and w;; are defined by*

¢U /Oew d(l wwéﬁ /erlﬂalﬂg da
S s

the viscoelastic part of the stress tensor (due to
compatibity conditions) takes the particular form

Oell 0 0
O = 0 ocen O ) (28)
0 0 0e33

and, the corresponding wall shear stress 7 is given
by

4u,, . 1
n o= w%g@(m%@( ) = 5 (V99):
+ ¢3(w33) ﬁ&ﬁll)z
— (wn)z. (29)

7T<;53

Now, let us consider the following dimensionless
variables®

T ~ N
i’:_v ¢:1,t:th,
¢
G 2 5 O s PP
- 9 - 9 e — €
T p? p?

where wyq is a characteristic frequency for unsteay
flow. Substituting these dimensionless variables

3Equation (3)a introduces some difficulties in handling
the general case ¢ = ¢(z).

459 is the two-dimensional Kronecker symbol.

®In cases where a steady flow rate is specified, the nondi-
mensional flow rate Q is identical to the classical Reynolds
number used for flow in pipes, see Robertson and Sequeira
[17].

into equations (27) and (3)4, we obtain, respec-
tively

pe = —4(1-3) Q) — 3 WE QD) + 2(dss).
= A(&ss), — (1) +4(@0). (30)

and
O?eij + We OYeij: 2/\ij (31)

where Wy = ¢?+/(pwo) /1t is the Womersley num-
ber, which reflect the unsteady flow phenomena,
We = AMwy is the Weissenberg number, related
with the flow viscoelasticity and

D;; = %Dij,

where D;; = %(vf it ’U;Z) is the rate of deforma-
tion tensor. Substituting the given dimensionless
variables into equation (29), we obtain

o= 2(1-2N)Q0) + Wg%é() - %(@33)2
+ _(@33)2 + %(éll)z - %(@11)2, (32)
where
P
1 77’1

Integrating condition (30) over the interval [Z1, 2],
with 2; fixed, we obtain the following relation-
ship between average pressure gradient and vol-
ume flow rate

(33)

1D
—~

pp(%,1)

RS
~
N—
|
i, 20
>
i
N—

—

S 7
o |
:B> >~
N ~—
—

N>

~—~

O
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~—

>

+ o+ o+
B~ R N ol

—~
&
i
—
—~
R
~
N—
|
g
i
—
—~
I
=

where A;(2) = Bg(2) =2 — 2
and By(%) = B zZ—

equations (32) and (33) in the Steady case and
fixing @ = 1 in (6) we deal with the Oldrody-B
fluid model. From, (28) and (31) (dimensionless

forms), we obtain

Ay(2) = Bs(2) =
7(2) = %1. Now, considering

Oe11 = Oe22 = 0, (34)
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Figure 2: Nondimensional average pressure gradient (33)
in the steady case of an Oldroyd-B fluid for different values
of the Reynolds number (QS = (0.001,0.5,1,5,10,20)) and
Weissenberg number (W, = (0.01,0.1, 1, 50, 100)).

and
Z
WeQs (83 + 43 — 1)

). (35)

Oe33 = 6117p<

Using (34), (35) and the approximation

gy = )
Qs (¢ ) Q

we get 11 = @1 = 0,

wn=ren(g) ama o wg)

and

w33 = iw e:np( — Wéé? >
_ % 7r2A e:np(— EA >
WeQs WeQs

Again due to compatibility conditions, these
results are only valid when A\ ~ 0, i.e. A1 ~ Ao.
Shown in Fig.2 is the normalized nine-director av-
erage pressure gradient steady solution (33) for an
Oldroyd-B fluid for different values of Reynolds
and Weissenberg numbers in [0, Z]. We conclude
that the behavior of the steady solution with fixed
Reynolds number does not change when we in-
crease the Weissenberg number. However, with
fixed Weissenberg number we can observe a slight
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Figure 3: Nondimensional wall shear stress (32) of an
Oldroyd-B fluid in the steady case for different values of
the Reynolds number (Qs = (5,10,20)) and Weissenberg
number (W, = (0.0001, 0.001, 0.01,0.1)).

change of the steady solution behavior, with in-
creasing Reynolds number. Also, we compare the
corresponding wall shear stress (32) for different
values of the Reynolds and Weissenberg numbers,
see Fig.3, and conclude that it undergoes a small
perturbation for Z close to zero and W, < 0.001.
However, for higher values of the Weissenberg
number the wall shear stress becomes constant.

4 Conclusion

Contrarily to Newtonian, generalized Newtonian
and second order fluids (see e.g. [5], [17], [2],
[3], [4], respectively) where the 1D director ap-
proach has been applied without restrictions to
rectilinear flows, in the case of Oldroyd-B fluids,
the 1D theory is only possible when the relaxation
and retardation times are close to each other, i.e.
A1~ Ag. This is due to compatibility condi-
tions imposed to system (3), as described above.
One of the possible extensions of this work is the
application of the 1D nine-director approach to
other viscoelastic models, including generalized
Oldroyd type fluids with shear-dependent viscos-
ity and blood flow models in both rigid and flex-
ible walled straight and curved vessels as well as
in vessels with branches or bifurcations. This is
the object of ongoing research. More detailed dis-
cussion of some of these issues can be found in

[1].
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