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Abstract: Using the one-dimensional approach based on the director theory which reduces the exact three-
dimensional equations to a system depending only on time and on a single spatial variable, we analyze
the axisymmetric unsteady flow of an incompressible viscoelastic fluid of Oldroyd type in an uniform
rectilinear pipe with circular cross-section. From this system we obtain the relationship between average
pressure gradient and volume flow rate over a finite section of the pipe and the corresponding equation
for the wall shear stress. Attention is focused on the steady flow case with rigid and impermeable walls.
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1 Introduction

In this paper we introduce a 1D model for vis-
coelastic non-Newtonian Oldrody-B flows in an
axisymmetric pipe with circular cross-section,
based on the director approach (Cosserat the-
ory) with nine directors developed by Caulk and
Naghdi [5]. The theoretical basis of this ap-
proach (see Cosserat [6], [7], based on the work of
Duhen [8]) is to consider an additional structure of
deformable vectors (called directors) assigned to
each point on a space curve (the Cosserat curve).
With this approach and integrating the axial com-
ponent of linear momentum for the flow field over
the pipe cross-section, the 3D system of equa-
tions is replaced by a system of partial differen-
tial equations which, apart from the dependence
on time, depends only on a single spatial vari-
able. Using this one-dimensional Cosserat theory
we can predict some of the main properties of the
three-dimensional problem. For additional back-
ground information, we refer that the Cosserat
theory has been used in studies of rods, plates
and shells, see e.g. Ericksen and Truesdell [9],
Truesdell and Toupin [18], Green et al. [14], [13]
and Naghdi [16]. Later, this theory has been
developed by Caulk and Naghdi [5], Green and
Naghdi [15], and Green et al. [12] in studies of
unsteady and steady flows, related to fluid dy-
namics. Recently, the nine-director approach has
been applied to blood flow in the arterial system

by Robertson and Sequeira [17] and also by Cara-
pau and Sequeira [2], [3], [4], considering Newto-
nian and non-Newtonian flows, respectively.

In this paper we are interested in studying
the initial boundary value problem of an incom-
pressible homogeneous Oldroyd-B fluid model in
a straight circular rigid and impermeable pipe
with constant radius where the fluid velocity field,
given by the director theory, can be approximated
by the following finite series1:

v∗ = v +
k∑

N=1

xα1 . . . xαN
W α1...αN

, (1)

with

v = vi(z, t)ei, W α1...αN
= W i

α1...αN
(z, t)ei. (2)

Here, v represents the velocity along the axis of
symmetry z at time t, xα1 . . .xαN

are the polyno-
mial weighting functions with order k (the num-
ber k identifies the order of hierarchical theory
and is related to the number of directors), the
vectors W α1...αN

are the director velocities which
are completely symmetric with respect to their
indices and ei are the associated unit basis vec-
tors. From this velocity field approach, we obtain

1Latin indices subscript take the values 1, 2, 3, Greek
indices subscript 1, 2. Summation convention is employed
over a repeated index.
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the unsteady relationship between average pres-
sure gradient and volume flow rate, and the cor-
respondent equation for the wall shear stress.

The goal of this paper is to develop a nine-
director theory (k = 3 in (1)) for the steady flow
of an Oldroyd-B fluid in a straight pipe with con-
stant radius, to compare the average pressure gra-
dient for different values of both Reynolds and
Weissenberg numbers.

2 Model Problem

Let us consider a homogeneous fluid inside a cir-
cular straight and impermeable pipe, the domain
Ω ⊂ R3, with boundary ∂Ω composed by the
proximal cross-section Γ1, the distal cross-section
Γ2 and the lateral wall Γw , see Fig.1.

Figure 1: Fluid domain Ω with the components of the
surface traction vector τ1, τ2 and pe. Γw is the lateral wall
of the pipe with equation φ(z, t), and Γ1, Γ2 are the up-
stream part and downstream districts of the pipe, respec-
tively.

Let xi (i = 1, 2, 3) be the rectangular Carte-
sian coordinates and for convenience set x3 = z.
Consider the axisymmetric motion of an incom-
pressible fluid without body forces, inside a sur-
face of revolution, about the z axis and let φ(z, t)
denote the instantaneous radius of that surface
at z and time t. The components of the three-
dimensional equations governing an Oldroyd type
fluid motion are given in Ω′ = Ω × (0, T ) by2





ρ
(∂v∗

∂t
+ v∗,iv

∗
i

)
= ti,i,

v∗i,i = 0,
in Ω′,

ti = −p∗ei + σijej , t = ϑ∗i ti,

σeij + λ1
O
σeij = µe

(
v∗i,j + v∗j,i

)
,

(3)

2We use the notation v∗
i,j = ∂v∗

i /∂xj and v∗
,iv

∗
i =

v∗
i ∂v∗/∂xi adopted in Naghdi et al. [5], [11].

with the initial condition

v∗(x, 0) = v0(x) in Ω, (4)

and the boundary condition

v∗(x, t) = 0 on Γw × (0, T ), (5)

where v∗ = v∗i ei is the velocity field and ρ is the
constant fluid density. Equation (3)1 represents
the balance of linear momentum and (3)2 is the
incompressibility condition. In equation (3)3, p∗
is the pressure and σij are the components of the
(symmetric) extra stress tensor given by

σij = µn

(
v∗i,j + v∗j,i

)
+ σeij ,

where σeij are the components of its viscoelas-
tic part. Here t denotes the stress vector on the
surface whose outward unit normal is ϑ∗ = ϑ∗i ei,
and ti are the components of t. In equation (3)4
the symbol

O
σeij represents the objective Oldroyd

derivative of the tensor σeij given by (see e.g. [19])

O
σeij =

∂σeij

∂t
+ v∗k

∂σeij

∂xk
+ σeik

(
v∗k,j − v∗j,k

)

−
(
v∗i,k − v∗k,i

)
σekj − a

[(
v∗i,k + v∗k,i

)
σekj

+ σeik

(
v∗k,j + v∗j,k

)]
, (6)

where a ∈ [−1, 1] is a real given parameter. The
initial velocity field v0 is assumed to be known.
Finally, µn = (µλ2)/λ1 is the Newtonian viscos-
ity and µe = µ

(
1 − λ2/λ1

)
= µλ is the elastic

viscosity, with µ = µn + µe denoting the viscos-
ity coefficient, and the constants λ1 and λ2 (with
0 6 λ2 < λ1) being the relaxation and retarda-
tion times, respectively. Models with λ2 = 0 are
called ”of Maxwell type” and those with λ2 > 0
”of Jeffreys type”. Oldroyd-B fluids correspond
to Jeffreys type fluids with a = 1 (in equation
(6)) and Oldroyd-A fluids correspond to a = −1,
see e.g. [10].

The lateral surface Γw of the axisymmetric
domain is defined by

φ2 = xαxα, (7)

and the components of the outward unit normal
to this surface are

ϑ∗α =
xα

φ
(
1 + φ2

z

)1/2
, ϑ∗3 = − φz(

1 + φ2
z

)1/2
, (8)

where a subscript variable denotes partial differ-
entiation. Since equation (7) defines a material
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surface, the velocity field must satisfy the condi-
tion

φφt + φφzv
∗
3 − xαv

∗
α = 0 (9)

at the boundary (7).
Let us consider S(z, t) as a generic axial sec-

tion of the domain at time t defined by the spatial
variable z and bounded by the circle defined in (7)
and let A(z, t) be the area of this section S(z, t).
The volume flow rate Q is defined by

Q(z, t) =
∫

S(z,t)
v∗3(x1, x2, z, t)da, (10)

and the average pressure p̄ is defined by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)
p∗(x1, x2, z, t)da. (11)

In what follows, this general framework will
be applied to the specific case of the nine-director
theory in a rigid pipe, i.e. φ = φ(z). Using con-
dition (1), with k = 3, it follows from Caulk and
Naghdi [5] that the approximation for the three-
dimensional velocity field v∗ is given by

v∗ =
[
x1

(
1 − x2

1 + x2
2

φ2

)2φzQ

πφ3

]
e1

+
[
x2

(
1 − x2

1 + x2
2

φ2

)2φzQ

πφ3

]
e2

+
[ 2Q
πφ2

(
1 − x2

1 + x2
2

φ2

)]
e3 (12)

where the volume flow rate Q(t) is

Q(t) =
π

2
φ2(z)v3(z, t). (13)

We remark that the initial condition (4) is satis-
fied whenQ(0) = ct.Also, from Caulk and Naghdi
[5] the stress vector on the lateral surface Γw is
given by

tw =
[ 1
φ(1 + φ2

z)1/2

(
τ1x1φz − pex1

− τ2x2(1 + φ2
z)

1/2
)]

e1

+
[ 1
φ(1 + φ2

z)1/2

(
τ1x2φz − pex2

+ τ2x1(1 + φ2
z)

1/2
)]

e2

+
[ 1
(1 + φ2

z)1/2

(
τ1 + peφz

)]
e3, (14)

where τ1 represents the wall shear stress in the ax-
ial direction of the flow. Instead of satisfying the

momentum equation (3)1 pointwise in the fluid,
we impose the following integral conditions

∫

S(z,t)

[
ti,i − ρ

(∂v∗

∂t
+ v∗

,iv
∗
i

)]
da = 0, (15)

∫

S(z,t)

[
ti,i − ρ

(∂v∗

∂t
+ v∗

,iv
∗
i

)]
xα1 . . .xαN

da = 0,

(16)
where N = 1, 2, 3.

Using the divergence theorem and integration
by parts, equations (15)− (16) for nine directors,
can be reduced to the four vector equations:

∂n

∂z
+ f = a, (17)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (18)

where n, kα1...αN , mα1...αN are resultant forces
defined by

n =
∫

S
t3da, kα =

∫

S
tαda, (19)

kαβ =
∫

S

(
tαxβ + tβxα

)
da, (20)

kαβγ =
∫

S

(
tαxβxγ + tβxαxγ + tγxαxβ

)
da, (21)

mα1...αN =
∫

S
t3xα1 . . .xαN

da. (22)

The quantities a and bα1...αN are inertia terms
defined by

a =
∫

S

ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)
da, (23)

bα1...αN =
∫

S
ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)
xα1 . . . xαN

da, (24)

and f , lα1...αN , which arise due to surface traction
on the lateral boundary, are defined by

f =
∫

∂S

(
1 + φ2

z

)1/2
twds, (25)

lα1...αN =
∫

∂S

(
1 + φ2

z

)1/2
twxα1 . . . xαN

ds. (26)

The equation relating the average pressure gra-
dient with the volume flow rate will be obtained
using these quantities (19)− (26).
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3 Results and Discussion

Replacing the solutions of equations (19) − (26)
into equations (17)−(18) the relationship between
average pressure and volume flow rate in a rigid
axisymmetric straight pipe with constant radius3
φ, is given by

p̄z(z, t) = −8µn

πφ4
Q(t) − 4ρ

3πφ2
Q̇(t)

+
2
φ2

(ψ33)z −
4
φ4

($33)z

− 1
φ2

(ψ11)z +
4
φ4

($11)z , (27)

where the functions ψij and $ij are defined by4

ψij =
∫

S
σeij da, $ijδ

β
α =

∫

S
σeijxαxβ da,

the viscoelastic part of the stress tensor (due to
compatibity conditions) takes the particular form

σe =



σe11 0 0
0 σe11 0
0 0 σe33


 , (28)

and, the corresponding wall shear stress τ1 is given
by

τ1 =
4µn

πφ3
Q(t) +

ρ

6πφ
Q̇(t) − 1

2πφ
(ψ33)z

+
2
πφ3

($33)z +
1

2πφ
(ψ11)z

− 2
πφ3

($11)z. (29)

Now, let us consider the following dimensionless
variables5

x̂ =
x

φ
, φ̂ = 1, t̂ = ω0t,

Q̂ =
2ρ
πφµ

Q, ˆ̄p =
φ2ρ

µ2
p̄, σ̂e =

φ2ρ

µ2
σe,

where ω0 is a characteristic frequency for unsteay
flow. Substituting these dimensionless variables

3Equation (3)4 introduces some difficulties in handling
the general case φ = φ(z).

4δβ
α is the two-dimensional Kronecker symbol.

5In cases where a steady flow rate is specified, the nondi-
mensional flow rate Q̂ is identical to the classical Reynolds
number used for flow in pipes, see Robertson and Sequeira
[17].

into equations (27) and (3)4, we obtain, respec-
tively

ˆ̄pẑ = −4
(
1 − λ

)
Q̂(t̂)− 2

3
W2

0
˙̂
Q(t̂) + 2

(
ψ̂33

)
ẑ

− 4
(
$̂33

)
ẑ
−

(
ψ̂11

)
ẑ
+ 4

(
$̂11

)
ẑ
, (30)

and

σ̂eij + We

O
σ̂eij= 2λD̂ij (31)

where W0 = φ2
√

(ρω0)/µ is the Womersley num-
ber, which reflect the unsteady flow phenomena,
We = λ1ω0 is the Weissenberg number, related
with the flow viscoelasticity and

Dij =
µ

φ2ρ
D̂ij ,

where Dij = 1
2

(
v∗i,j + v∗j,i

)
is the rate of deforma-

tion tensor. Substituting the given dimensionless
variables into equation (29), we obtain

τ̂1 = 2
(
1 − λ

)
Q̂(t̂) + W2

0

1
12

˙̂
Q(t̂) − 1

2π
(ψ̂33)ẑ

+
2
π

($̂33)ẑ +
1
2π

(ψ̂11)ẑ −
2
π

($̂11)ẑ , (32)

where

τ̂1 =
φ2ρ

µ2
τ1.

Integrating condition (30) over the interval [ẑ1, ẑ],
with ẑ1 fixed, we obtain the following relation-
ship between average pressure gradient and vol-
ume flow rate

p̂p(ẑ, t) = ˆ̄p(ẑ, t) − ˆ̄p(ẑ1, t) (33)

= 4
(
1 − λ

)
Â1(ẑ) Q̂(t̂)

+
2
3
W2

0Â2(ẑ)
˙̂
Q(t̂)

+ 2
(
ψ̂33(ẑ, t)− ψ̂33(ẑ1, t)

)
B̂4(ẑ)

+ 4
(
$̂33(ẑ, t)− $̂33(ẑ1, t)

)
B̂5(ẑ)

+
(
ψ̂11(ẑ, t) − ψ̂11(ẑ1, t)

)
B̂6(ẑ)

+ 4
(
$̂11(ẑ, t)− $̂11(ẑ1, t)

)
B̂7(ẑ),

where Â1(ẑ) = Â2(ẑ) = B̂5(ẑ) = B̂6(ẑ) = ẑ1 − ẑ

and B̂4(ẑ) = B̂7(ẑ) = ẑ − ẑ1. Now, considering
equations (32) and (33) in the steady case and
fixing a = 1 in (6) we deal with the Oldrody-B
fluid model. From, (28) and (31) (dimensionless
forms), we obtain

σ̂e11 = σ̂e22 = 0, (34)

Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp61-66)



Figure 2: Nondimensional average pressure gradient (33)
in the steady case of an Oldroyd-B fluid for different values
of the Reynolds number (Q̂s = (0.001, 0.5, 1, 5, 10, 20)) and
Weissenberg number (We = (0.01, 0.1, 1, 50, 100)).

and

σ̂e33 = exp
( ẑ

WeQ̂s

(
x̂2

1 + x̂2
2 − 1

)
)
. (35)

Using (34), (35) and the approximation

exp
( ẑ

WeQ̂s

(
ζ2 − 1

)
)

' exp
(
− ẑ

WeQ̂s

)

− ζ2

WeQ̂s

exp
(
− ẑ

WeQ̂s

)
,

we get ψ̂11 = $̂11 = 0,

ψ̂33 = π exp
(
− ẑ

WeQ̂s

)
− 1

2
πẑ

WeQ̂s

exp
(
− ẑ

WeQ̂s

)
,

and

$̂33 =
1
4
π exp

(
− ẑ

WeQ̂s

)

− 1
6

πẑ

WeQ̂s

exp
(
− ẑ

WeQ̂s

)
.

Again due to compatibility conditions, these
results are only valid when λ ' 0, i.e. λ1 ' λ2.
Shown in Fig.2 is the normalized nine-director av-
erage pressure gradient steady solution (33) for an
Oldroyd-B fluid for different values of Reynolds
and Weissenberg numbers in [0, ẑ]. We conclude
that the behavior of the steady solution with fixed
Reynolds number does not change when we in-
crease the Weissenberg number. However, with
fixed Weissenberg number we can observe a slight

Figure 3: Nondimensional wall shear stress (32) of an
Oldroyd-B fluid in the steady case for different values of
the Reynolds number (Q̂s = (5, 10, 20)) and Weissenberg
number (We = (0.0001, 0.001, 0.01, 0.1)).

change of the steady solution behavior, with in-
creasing Reynolds number. Also, we compare the
corresponding wall shear stress (32) for different
values of the Reynolds and Weissenberg numbers,
see Fig.3, and conclude that it undergoes a small
perturbation for ẑ close to zero and We � 0.001.
However, for higher values of the Weissenberg
number the wall shear stress becomes constant.

4 Conclusion

Contrarily to Newtonian, generalized Newtonian
and second order fluids (see e.g. [5], [17], [2],
[3], [4], respectively) where the 1D director ap-
proach has been applied without restrictions to
rectilinear flows, in the case of Oldroyd-B fluids,
the 1D theory is only possible when the relaxation
and retardation times are close to each other, i.e.
λ1 ' λ2. This is due to compatibility condi-
tions imposed to system (3), as described above.
One of the possible extensions of this work is the
application of the 1D nine-director approach to
other viscoelastic models, including generalized
Oldroyd type fluids with shear-dependent viscos-
ity and blood flow models in both rigid and flex-
ible walled straight and curved vessels as well as
in vessels with branches or bifurcations. This is
the object of ongoing research. More detailed dis-
cussion of some of these issues can be found in
[1].
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