
A comparative numerical study of a non-Newtonian
blood flow model

ABDELMONIM ARTOLI
Inst. Superior T´ecnico
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Abstract: Pulsatile non-Newtonian blood flow in an idealized vessel is numerically investigated. The Carreau-
Yasuda model is used to account for the shear-thinning viscosity of blood. For validation purposes, we have used
two numerical methods: a mesoscopic lattice-Boltzmann equation and a standard finite element solver. Good
agreement for the velocity and the shear stress has been obtained from the two approximate solutions for the
assigned laminar flow conditions. The coupling of the two methods to deal with more complex flows in realistic
geometries is under development.
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1 Introduction

Cardiovascular diseases represent a major cause of
mortality in the world (see e.g. [7]). It is now com-
monly accepted that hemodynamics plays an impor-
tant role in the localization and development of arte-
rial diseases and can have useful applications in med-
ical research, surgical planning and therapy to restore
blood flow in pathological organs and tissues. For in-
stance, in the case of atherosclerosis numerous stud-
ies report that hemodynamic factors such as low and
oscillatory shear stress, temporal and spatial variation
of wall tension play crucial roles. These findings al-
low to identify risk factors in spots of low shear stress
regions, high pressure distributions along the vessels
or high particle residence times in the cardiovascu-
lar system. Currently, experimental measurements of
blood flow velocity and pressure drop in the vascula-
ture involve both invasive and non-invasive techniques
such as intra-vascular ultrasound probes [10], elec-
tromagnetic flow probes [14] or magnetic resonance
imaging [15]. The corresponding collected data are
accurate enough for quantification of some aspects of
the arterial diseases but are very sensitive to disturb-
ing factors. This results in difficult interpretations in
most relevant cases. The role of computational fluid
dynamics (CFD) in quantifying local hemodynamics
for each specific patient and in designing enhanced
devices is gaining more ground and may be included
as a routine clinical investigation in the future.
In a simplistic approach, blood can be modelled as

a suspension of erythrocytes (red blood cells), the
most numerous of the formed elements (about 98%)
in an aqueous polymer solution, the plasma. This ap-
proach is incomplete in the sense that it ignores many
other components of blood (leukocytes, platelets, sus-
pended salts, proteins and other matter), but is rea-
sonable since red blood cells (RBCs) represent about
45% of the volume of normal human blood and are
by two orders of magnitude more numerous than all
other suspended particles. The RBCs tend to aggre-
gate at low shear rates forming complex structures
namedrouleaux and these aggregates break at higher
shear rates. Ignoring the viscoelastic effects due to
dissipation and storage of elastic energy, and consid-
ering only the shear-dependent blood viscosity caused
by the formation and destruction ofrouleaux, an em-
pirical model for describing blood flow, obtained by
fitting experimental data in one dimensional flows is
the shear-thinning Carreau–Yasuda model [4] given
by

η(γ̇) = η∞ + (η0 − η∞) [1 + (λγ̇)a]
n−1

a (1)

Hereη0 andη∞ are the asymptotic viscosities at low
and high shear rates,λ is a characteristic relaxation
time anda, n are parameters used to fit experimen-
tal data. Whena = 0 or n = 1 the fluid behaves
as Newtonian. Whena �= 0 and n < 1 the fluid
is shear-thinning (the viscosity decreases with shear
rate). Here we consider the following parameter val-
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ues for blood flowη0 = 0.022 Pa s,η∞ = 0.0022 Pa
s,λ = 0.11 s,a = 0.644 andn = 0.392 (see e.g. [5]).

2 Governing equations and numeri-
cal methods

2.1 Problem definition

We consider pulsatile flow of an incompressible non-
Newtonian fluid in a three-dimensional tube, possibly
curved and irregular. Even though our numerical sim-
ulations will be conducted in straight tubes with con-
stant cross section, this is not relevant to the usage of
the numerical solvers, which are prepared to accept
realistic geometries such as the one shown in figure
2.1, resulting from medical imaging data.

Figure 1: Geometric reconstruction of a segment of
a real artery obtained by magnetic resonance imaging
(MRI).

To fix notation, consider an open regular setΩt ⊂ IR3,
representing the interior of a vessel at timet and de-
note byΓw

t ,Γin
t andΓout

t the vessel lateral wall, inlet
boundary and outlet boundary, respectively. Denoting
by u andp the fluid’s velocity and pressure and byσ
the Cauchy stress tensor, the governing equations can
be derived from the conservation of linear momentum

ρ
∂u

∂t
+ ρ(u · ∇u) = ∇ · σ + f in Ωt (2)

whereρ is the constant density andf are the external
body forces per unit volume (e.g. gravity).
The incompressibility condition reads

∇ · u = 0 in Ωt (3)

Equations (2) and (3) are coupled with a constitutive
equation for the stress tensor,σ,

σ = −pI + η(γ̇)(∇u + (∇u)T ) (4)

whereτ = η(γ̇)(∇u+(∇u)T ) is the extra stress ten-
sor and the functional relation between shear rate and
viscosityη(γ̇) is given by the Carreau–Yasuda model
(1). Incompressible fluids of this type for which the
extra stress tensor is related to the velocity gradi-
ent through (4) belong to a class of inelastic non-
Newtonian fluids called generalized Newtonian fluids.

The system of equations (2)-(3) must be closed with
proper initial and boundary conditions. This usually
reduces to prescribing either the velocity field or tan-
gential and normal components of the stress vector in
Γin andΓout. We prefer to consider the flow as be-
ing driven by a pressure drop, but this must be done
in a careful way since only for fully developed out-
flow velocities a prescribed normal component of the
stress vector (together with zero tangential velocity)
corresponds to a prescribed pressure.
In the sequel we will further assume that the tube is
rigid and so the domainΩt does not depend on time.
For this reason the time subscript in the spatial domain
and boundaries will be dropped on the notations.

2.2 Weak formulation and finite element ap-
proach

The finite element approach requires the differential
problem to be written in a variational form. Let us
define two Hilbert spacesV and Q. The weak or
variational formulation of our problem is obtained by
multiplying the governing equations by test functions
v ∈ V andq ∈ Q and integrating by parts. The use
of test functions can be seen as describing indirectly
the solution by its effect on them. If we prescribe as
boundary condition the normal stress vectors = σ ·n
in Γ = Γin ∪ Γout, together with no-slip boundary
conditions inΩ − Γ, our problem consists in finding
u ∈ V andp ∈ Q such that,

∫
Ω

ρ
Du

Dt
· v +

∫
Ω

τ : ∇v −
∫
Ω

p∇ · v =

∫
Ω

f · v +
∫
Γ
s · v, ∀v ∈ V

and∫
Ω

q∇ · u = 0, ∀q ∈ Q.

The discretization in time is done by a suitable sec-
ond order trapezoidal rule/back-differentiation for-
mula and the discretization in space uses a standard
Petrov–Galerkin method (see e.g. [12]). To apply
the Galerkin method we discretize the spatial do-
main Ω and introduce two families{Vh | h > 0}
and{Qh | h > 0} of finite element subspaces ofV
and Q, respectively, satisfying a compatibility con-
dition, the so-calleddiscrete inf-sup or LBB condi-
tion. The solution is approximated by piecewise poly-
nomial functions on each element of the discretized
domain. These polynomials must be chosen in such
a way that the discrete inf-sup condition is fulfilled,
otherwise thelocking phenomenon for the velocity
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field or spurious pressure modes can occur. For in-
stance equal order interpolation for both the veloc-
ity and pressure unknowns does not verify the inf-
sup condition. The most common discretization tech-
nique isP2 − P1 (piecewise quadratic elements for
the velocity and linear elements for the pressure) or
P1 iso P2−P1 where the velocity is linear over each
of the four sub-elements obtained by joining the mid-
points of the edges of each pressure element. Since
the spaces of piecewise polynomials are of finite di-
mension, the substitution of the functions in the weak
formulation by their expansions in the basis of the dis-
crete spaces leeds, after the numerical evaluation of
the integrals, to a nonlinear system of finite dimen-
sion. The resulting system is then linearized, at each
time step, using an iterative Newton-like method. Er-
ror bounds can be derived for the numerical solution
of this problem, based on the size of the mesh used
to discretize the domain and on the type of finite el-
ements (regularity across elements and interpolation
order).

2.3 Lattice–Boltzman method for shear-
thinning fluids

Simulations of complex fluids such as blood are char-
acterized by the existence of time-scale phenomena.
Typical parameters may range from mesoscale to
macroscale. This makes it difficult for a single numer-
ical solver to capture the complete behaviour and deal
with the whole complexity of the fluid and the con-
taining vessel. Most commercial numerical solvers
allow simulations of shear-thinning fluids through
defining a shear-dependent viscosity which is a func-
tion of the shear-rate. However, the interdependency
of the shear rate computed from the velocity gradi-
ents and the viscosity complicates the regime. The
finite element approach described in the previous sec-
tion is quite adequate and accurate for simulation of
non-Newtonian fluids and for fluid-structure interac-
tions. However, due to the lack of analytical solu-
tions for the Carreau-Yassuda model and difficulties
in obtaining accurate experimental results, compari-
son with other numerical methods becomes manda-
tory. This is the goal of using the lattice–Boltzmann as
an independent mesoscopic solver for shear-thinning
fluids. Although the method is relatively new (about
two decades), it has been successfully used in simu-
lations of non-Newtonian fluids such as viscoelastic
[11], [9], citeoldroyd, power-law [13], Cross [6] and
Carreau-Yasuda fluids [2]. Due to its inherent paral-
lelism and straightforward implementation and also to
its capability to deal with suspension fluids, we have
chosen an adaptation of the lattice–Boltzmann method
for shear–thinning fluids recently proposed by Artoli

and Sequeira [2].
The lattice–Boltzmann equation is a special finite

difference discretization of the simplified Boltzmann
equation (see e.g. [3]) which describes transport phe-
nomena at the mesoscale level. The fluid motion is
modelled by the transport of simple fictitious parti-
cles on the nodes of a Cartesian grid. Simulations
with this method involve two simple steps: stream-
ing to the neighbouring nodes and colliding with lo-
cal node populations represented by the probabilityfi
of a particle moving with a velocityei per unit time
stepδt. Populations are relaxed towards their equi-
librium states during a collision process. The equi-
librium distribution function is a low Mach number
approximation to the Maxwellian distribution. The
lattice–Boltzmann equation

fi(x + eiδt, ei, t + δt) − fi(x, ei, t) = Λ

whereΛ = − 1
τ [fi(x, ei, t) − f

(0)
i (x, ei, t)], can be

obtained by discretizing the evolution equation of the
distribution functions in the velocity space using a fi-
nite set of velocitiesei. In this equation,τ is the di-
mensionless relaxation time which links the micro-
scopic evolution and the macroscopic average ther-
modynamic behaviour of the fluid. By Taylor ex-
pansion of the lattice–Boltzmann equation and appli-
cation of the multiscale Chapman-Enskog technique
[3], the Navier-Stokes equations and the momentum
flux tensor up to second order in the Knudsen num-
ber are obtained. The hydrodynamic density,ρ, and
the macroscopic velocity,u, are determined in terms
of the particle distribution functions from the laws of
conservation of mass and momentum. The pressure
is given byp = ρc2s and the kinematic viscosity is
ν = c2

sδt(τ − 1
2 ), wherecs is the lattice speed of

sound. The momentum flux is directly computed from
the non-equilibrium part of the distribution functions
and the strain rate tensor is

Sαβ = − 1
2Cδtτcρ

∑
i

f
(1)
i eiαeiβ (5)

The stress tensor is given by

σαβ = −ρc2
sδαβ −

(
1 − 1

2τc

) ∑
i=0

f
(1)
i eiαeiβ . (6)

In constitutive equations of shear-thinning generalized
Newtonian fluids the viscosity depends on the magni-
tude or the second invariant of the strain rate tensor
which can be computed from the double inner prod-
uct ofSαβ by itself

|S| ≡ γ̇ =
√

2Sαβ : Sαβ. (7)
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This is locally computed during collision from the
simple relation

γ̇ = γ̇c

√
0.5(S2

xx + S2
yy + S2

zz) + (S2
xy + S2

xz + S2
yz)
(8)

whereγ̇c = 3
2ρτc

can be used as a characteristic shear
rate. In this study we propose thatτc = 1 to benefit
from the simplicity and the accuracy of the scheme at
τ = 1. The Carreau-Yasuda viscosity behaviour of
blood can be modelled in terms of the dimensionless
relaxation times (τ andτc)

τ = τ∞ + (τ0 − τ∞)(1 + (λγ̇)a)b (9)

whereτ0 and τ∞ correspond toη0 and η∞, respec-
tively.

3 Numerical simulations

The numerical simulations were carried out in a tube
with 2 cm diameter and 4 cm length. This length is
large enough to obtain fully developed flows. The
flow is driven by a pressure sine wave of typeA sin ωt,
whereA is the length of the tube. No-slip conditions
are applied in the tube lateral wall. The parameters
used for the Carreau-Yasuda model are those men-
tioned above in the introduction (see e. g. [5]).
The convergence criterium was set by comparing cor-
responding values of the velocity field in successive
periods and fixing a tolerance of 1 %.
The results obtained for the velocity and shear stress
were compared in a circular cross-section of the tube.
Figures 2 and 3 show the velocity profiles obtained by
the lattice-Boltzman method (dots) and by the finite
element method (lines) in the beginning and at the end
of a time period. The agreement is excellent, however
the LB profile is more flattened and has higher values
in the [r/4, r/2] region of the tube. This may be at-
tributed to an observed small phase lag that is more ev-
ident in Figure 4, which depicts the evolution in time
of the centerline velocity. The phase lag is clearly ob-
served at the peaks in two successive periods. The lag
between velocity and pressure is approximatelyπ/2,
which is in qualitative agreement with the results re-
ported in literature (see [17, 2]).
Concerning the shear stress, despite of the large dif-
ference calculation procedures in both methods, ex-
cellent agreement has also been noticed, as shown in
Figure 5, where the shear stress at the beginning of
a period is represented for both LB and FEM. Similar
agreement is observed throughout the complete period
(data not shown). Again there is a discrepancy (max-
imum 10 %) between the results of the two methods,
especially in the region[r/4, r/2].

Comparative studies of wall shear stress (WSS) were
also conducted due to its role in hemodynamics. Fig-
ure 6 shows time evolution of WSS over the last two
simulated periods. The phase lag appears again, even
more prominently. This results in a slight discrepancy
of the reported times at which low, oscillatory or high
shear stress occurs.
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Figure 2: Velocity profile with LB (dots) and FEM
(line) att = 0.
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Figure 3: Velocity profile with LB (dots) and FEM
(line) att = π.

4 Discussion

The non-Newtonian shear-thinning Carreau-Yasuda
viscosity law to model blood flow in a straight ves-
sel has been implemented using two independent
numerical methods: a finite element Navier-Stokes
solver where the shear stress is obtained from the
velocity gradients and a lattice–Boltzmann algorithm
that solves the mesoscopic Boltzmann equation algo-
rithm and computes the shear stress from the non-
equilibrium properties of an evolving fluid. We have
shown that the results obtained with both methods are
in good agreement, for the non-Newtonian time de-
pendent velocity field and the shear stress, through-
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Figure 4: Evolution of the centerline velocity in two
successive periods with LB (dots) and FEM (line).
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Figure 5: Shear stress magnitude with LB (dots) and
FEM (line) att = 0.

out the simulated time period in which the flow is
driven by a sine wave. However, a phase lag be-
tween the two methods is observed. The lattice–
Boltzmann is lagging the finite element method with
a small phase. This may be attributed to the differ-
ence in time at which measurements are recorded. The
lattice–Boltzmann method is known to be more accu-
rate at half time steps ([1]) in two dimensions, but this
time shift is negligible in three dimensions. The fi-
nite element method consumes considerable compu-
tational resources to converge to the right phase. It is
not yet clear which one is the most accurate method.
This is a subject of ongoing research. A comparison
between the results obtained with the shear-thinning
and the Newtonian models has reported higher val-
ues for the shear stress and oscillations closer to the
wall for the shear-thinning fluids, even in large arter-
ies. Therefore, non-Newtonian simulations should be
considered if accurate shear stress values are needed.
Presently we are interested in using the two numerical
techniques in the simulation of this non-Newtonian
blood flow model in segments of the carotid artery and
of the circle of Willis. The comparison of the two nu-
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Figure 6: Evolution of the WSS in two successive pe-
riods with LB (dots) and FEM (line).

merical methods in terms of efficiency and computa-
tional times is a subject for a future publication as it is
not relevant for the validation of results.
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