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Abstract: - In this work is given an alternative proof of the Onsager´s Reciprocal Relations for multi-component 
isothermal diffusion in the presence of external forces. The main characteristic of this proof is its simplicity. 
Moreover, this proof does not rely neither on the principle of microscopic reversibility nor on any particular 
statistical law as previous work. 
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1.   Introduction 
The field of irreversible thermodynamics provides 
us with a general framework for the macroscopic 
description of processes. It can be viewed as a 
branch of microscopic physics with applications to 
fluid mechanics, electromagnetic theory etc. The 
main issue of the thermodynamics of irreversible 
process is that can be viewed from the start as 
continuum theory, treating the state parameters of 
the theory as field variables i.e. continuous 
functions of space coordinates and time[1]-[3]. 
In the last century, irreversible thermodynamics was 
developed as a powerful theoretical tool for 
understanding the fundamental laws of many 
physical phenomena and industrial processes 
including transport phenomena, material 
manufacture, etc [4]-[9].  
Irreversible thermodynamics is based on four 
postulates above and beyond those of equilibrium 
thermodynamics [1]-[3]: 
1. The equilibrium thermodynamic relations apply 
to systems that are not in equilibrium, provided that 
the gradients are not too large (quasi-equilibrium 
postulate) 
2. All the fluxes (ji) in the system may be written as 
linear relations involving all the thermodynamic 

forces, Xi. (linearity postulate, ∑
=

=
n

1k
iiki Xj Ω   ;   

i =1,2…n) 

3. No coupling of fluxes and forces occurs if the 
difference in tensorial order of the flux and force is 
an odd number (Curie´s postulate) 
4. In the absence of magnetic fields and assuming 
linearly independent fluxes or thermodynamic 
forces the matrix of coefficients in the flux-force 
relations is symmetric. This postulate is known as 
the Onsanger´s Reciprocal Relations (ORR): 
 Ωik= Ω ki. Onsager derived these relations for the 
first time in 1931 [10]-[11]. He used the principle of 
microscopic reversibility by applying the invariance 
of the equations of motion for the atoms and 
molecules with respect to time reversal (the 
transformation t→-t). This means that the 
mechanical equations of motion (classical as well as 
quantum mechanical) of the particles are symmetric 
with respect to the time. In other words, the 
particles retrace their former paths if all velocities 
are reversed. Onsager also made a principal 
decision: the transition from molecular reversibility 
to microscopic reversibility can be made. It is 
important to remark that Onsager did not use a 
particular molecular model. As a consequence the 
results and limitations of the theory are valid for all 
materials, so that the theory can be related to 
continuum theory [12]. Casimir developed further 
this theory [13]. 
In the literature, there appear to be two groups of` 
derivations of Onsager´s reciprocal relations. In the 
first of these, it is assumed that the macroscopic 
laws of motion hold for the averages of the 
macroscopic coordinates (such as temperature 
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gradient, concentration gradient, etc) even if their 
values are microscopic. The second group assumes 
a definite statistical law for the path representing the 
system in phase space [14]. 
Although there is experimental evidence for the 
validity of ORR [15]-[17] doubts have been raised 
in the literature [18]; Moreover, the theoretical basis 
of ORR requires careful considerations as it was 
noticed by Prigogine and Kondepudi [19] in a 
recent review. The aim of this work is to eliminate 
any doubt about this principle by giving a simple 
proof for the isothermal multi-component diffusion 
which is important in many industrial processes [3], 
[20]-[23].  
 
 
2.   Problem Formulation 
The uncompensated heat produced by an 
irreversible process is given by the dissipation 
function. The dissipation function is derived from 
an entropy balance [1]-[3]. The starting point of this 
work is the definition of the dissipation function Ψ  
in the absence of viscous flows for a non-elastic, 
non-reacting, isothermal & isotropic fluid 
containing n diffusing species [1]-[3],[12]:   
 

∑
=

==
n

1i
ii xjTσΨ  ; i = 1,2…n  (1) 

 
where σ is the rate of production of entropy per unit 
volume,  T stands for the thermodynamic 
temperature and the molar flux ji is measured 
relative to the velocity υ of the centre of mass : 
 

)(cj iii υυ −=  ; ∑
=

=
n

1i
iii /cM ρυυ   (2) 

 
ci is the molar concentration, Mi stands for the molar 
mass of the i-th species and the density ρ is given 
as: 
 

∑
=

=
n

1i
iicMρ      (3) 

 
The thermodynamic forces xi are given as 
 

( ) iTii Fgradx +−= µ     (4)  
  
where 
 
 )p(gradV)grad()grad( iP,TiTi += µµ  (5) 
 
 is the gradient of i-th substance molar chemical 
potential, Vi stands for the partial molar volume of 
the i-th substance, p is the hydrostatic pressure and 
Fi represents the external force per mole of each 
substance. In this work, it is assumed that external 
forces act on the system or in other words there is 
no mechanical equilibrium. 
At this point it is assumed that the quasi-equilibrium 
postulate holds true (see Introduction); 
Consequently, equilibrium thermodynamic relations 
such as the Gibbs-Duhem equation, can be applied 
to the system. 
Schmitt and Graig [24] have shown that if the 
transformed thermodynamic forces  
 

ρ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+= ∑

=

n

1j
jjii

´
i Fc)p(gradMxx  (6) 

 
are used in the dissipation function, then 
 

0xc
n

1i

´
ii =∑

=
     (7) 

 
The above equation follows from Eq. (3)-(5) and (6) 
by using the Gibbs - Duhem equation: 
 

 ( ) )p(gradgradc
n

1i
Tii =∑

=
µ    (8)  

 
It is also necessary to introduce new fluxes, defined 
relative to an arbitrary reference velocity υ≠: 
 

 )(cj iii
≠≠ −= υυ  ; ∑

=

≠ =
n

1i
iiw υυ  ; ∑

=
=

n

1i
i 1w  

      (9) 
If these new fluxes are introduced in Eq. (1), then 
the dissipation function is invariant under the 
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transformation to the new set of fluxes as well as to 
the thermodynamic forces [25]: 
 

∑
=

≠=
n

1i

´
ii xjΨ                (10) 

 
Please note, that the fluxes ji

≠ are also linearly 
dependent, since from eq (9)  
 

0c/jw i
1i

ii =∑
=

≠               (11)   

 
By using Eq (11) the dissipation function (Eq. 10) is 
written as: 
 

∑ ∑
=

−

=

≠≠ +==
n

1i

1n

1j,i

´
jinijiij

´
ii xj)wc/cw(xj δΨ  

 
or 
 

∑
−

≠=
1n

j,i

´
jiij xjAΨ                     (12) 

 
where 
 

nijiijij wc/cwA += δ  ; i,j = 1,2..,n-1           (13) 

 
Eq (12) can be regarded as the sum of fluxes and 
transformed dynamic forces: 
 

∑ ∑
−

=

−

=

≠
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

1n

1i

1n

1j

´
jiji xAjΨ              (14) 

 
or, equally as well, as the sum of products of 
transformed fluxes and thermodynamic forces: 
 

´
j

1n

1j

1n

1i
iij xjA∑ ∑

−

=

−

=

≠
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Ψ              (15) 

 
The main idea of irreversible thermodynamics is to 
derive from the dissipation function fundamental 
macroscopic laws [1]-[3]; For this purpose the 

linearity postulate (see Introduction) is applied to 
the fluxes and driving forces as these appear in the 
dissipation function. In our case there are n-1 
independent fluxes and driving forces (Eq. 14-15). 
Consequently, by using the linearity postulate (see 
Introduction) the following equations between 
fluxes and thermodynamic driving forces are 
derived: 
 

( ) ( )∑∑
−

=

≠
−

=

≠≠ ==
1n

1k,j

´
jkjik

1n

1k,j

´
kjkiji xAlxAlj        (16) 

 
or 
  

( ) ( )∑∑
−

=

≠≠
−

=

≠≠ ==
1n

1k,j
jjkik

1n

1k,j
kkjij

´
i jArjArx       (17) 

 
The quantities l≠ij are the mobility coefficients and 
r≠ij are the friction coefficients for diffusion, 
respectively. Since the fluxes and the 
thermodynamic forces are linear independent (Eq. 
15-16), the Onsager reciprocal relations (ORR) state 
that  
 

≠≠ = jiij ll   or  ≠≠ = jiij rr  ; i,j  =1,2…n-1            (18) 

 
In the following section an alternative proof of the 
ORR is given. 
 
 
3.   Problem Solution 
The starting point of this analysis is the introduction 
of the mobility coefficients (L≠

ij) and the friction 
coefficients (R≠

ij) by using the linearity postulate 
[26]: 
 

∑
=

≠≠ =
n

1j

´
jiji xLj  ; i = 1,2….n             (19) 

 

∑
=

≠≠=
n

1j
jij

´
i jRx  ; i = 1,2….n                  (20) 

 
In the above equations it is assumed that the 
mobility coefficients and the friction coefficients 
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are different than these defined in Eq (16)-(17).  By 
using Eq. (11) and eliminating j≠n from Eq. (20), the 
following equation is derived: 
 

( )∑
−

=

≠≠≠ −=
1n

1j
jnjinnjij

´
i jwc/RcwRx  ;i=1,2..n 

               (21) 
From Eq. (7), (13) and (17) it follows that 
 

( )∑ ∑
=

≠
−

=

≠≠

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−

=
n

1j,i
nj

1n

1k
ikknjjiji

´
n

c/jrcwc/wrc

x

                (22) 
Comparison of Eq. (17) and (22) with (21) gives 
 

( )∑
−

=

≠≠

≠≠

+

=−

1n

1k
ikknjjij

njinnjij

rcwc/wr

wc/RcwR

 ; i,j = 1,2..n-1      (23) 

 
and  
 

( )∑ ∑
−

=

≠
−

=

≠≠

≠≠

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−=

=−

1n

1i
nj

1n

1k
ikknjjiji

njnnnjnj

c/jrcwc/wrc

wc/RcwR

 

j= 1,2…n-1                                                   (24) 
 
Following Tirrell and Harris [27] the friction 
coefficients (see Eq. 20) are introduced into Eq (7)       
 

∑ ∑ ∑ ∑∑
= = = =

≠≠≠≠≠

=
===

n

1k

n

1i

n

1i

n

1k
kkiiikik

n

1k

´
kk 0cRjjRcxc

 
or  
 

∑
=

≠ =
n

1k
kki 0cR  ; i =1,2 …n             (25) 

 

The above equation holds true due to the fact that 
the fluxes are defined relative to an arbitrary 

velocity and in the most general case, ∑
=

≠ ≠
n

1i
i 0j   

 
By introducing Eq. (25) into Eq. (24) it follows that 
 

( ) 0c/rccRwc/w

rccR

1n

1j

2
nijjinnnjj

1n

1i

1n

1i
ijiiij

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∑

∑ ∑

−

=

≠≠

−

=

−

=

≠≠

 

j = 1,2..n-1               (26) 
 
As Eq. (26) holds for arbitrary concentrations, one 
could derive the following equations: 
 

∑∑
−

=

≠
−

=

≠ =
1n

1i
iji

1n

1i
iji rcRc   ; j = 1,2 .. n-1               (27) 

 

∑
−

=

≠≠ −=
1n

1j

2
nijjinn c/rccR              (28) 

 
From equation (27) it follows that  
 

≠≠ = ijij rR  ; i,j = 1,2…n-1                                    (29) 

 
The above equation could be viewed as a 
consequence of the Galilean invariance. Galilean 
transformations describe the change from one 
reference system into another by means of a 
uniform translation. In the classical theory, the 
physical laws and equations have to be invariant 
with respect to reference systems that are in relative 
translation at constant velocity. They are said to be 
invariant Galilean transformations [12]. In our case, 
the fluxes defined in Eq. (16)-(17) and in Eq. (19)-
(20) could be viewed as fluxes defined with respect 
to different reference systems. According to 
Galilean transformation the physical laws and 
equations have to be invariant regarding the 
different system of reference. The mobility and the 
friction coefficients are physical quantities 
characterizing matter; Consequently, the mobility as 
well as the friction coefficients are independent of 
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the fluxes reference system and Eq. (29) hold true. 
In a similar way, the invariance of the dissipation 
function with respect to the flux reference velocity 
can be viewed as a consequence of the Galilean 
invariance. 
By using Eq. (29) one can eliminate the first term of  
the left and the right hand-side of  Eq (23) and the 
following equation is directly derived: 
 

∑
−

=

≠≠ −=
1n

1j
nijjin c/rcR  ; i = 1,2…n-1             (30) 

 
By multiplying the above equation by ci/cn, 
summing from i=1 up to n-1 and comparing the 
result with Eq. (28) the following equation is 
derived : 
 

∑
−

=

≠≠ −=
1n

1j
nijjin c/rcR  ; i = 1,2…n             (31) 

  
By further using Eq. (29), the above equation is 
equivalently written as: 
 

0Rc
n

1j
ijj =∑

=

≠  ; i = 1,2…n                    (32) 

 
By combining Eq. (25) and Eq. (33) it follows that 
 

∑∑
=

≠

=

≠ ==
n

1j
jij

n

1j
ijj 0RcRc ; i, j = 1,2 …n         (33) 

  
or 
 

≠≠ = jiij RR  ; i, j = 1,2 …n             (34) 

 
Given the above equality, by taking into account 
Eq. (29) the Onsager´s reciprocal relations for the 
linearly independent friction coefficients are 
derived: 
 

≠≠ = jiij rr  ; i,j =1,2…n-1                       (35) 
 

As the flux and the driving forces defined in Eq. 
(16)-(17) are linearly independent then the inverse 
matrix of the friction coefficients r≠ij exists; This 
inverse matrix is the matrix of mobility coefficients 
l≠ij. The matrix of friction coefficients is 
symmetrical (see Eq. 34) and also the inverse 
matrix, defined as the matrix of mobility 
coefficients has to be symmetrical [17]:  
  

≠≠ = jiij ll  ; i,j =1,2…n-1            (35) 
 
The above equations are the Onsager´s Reciprocal 
Relations. The analysis presented in this work is not 
a new analysis; The idea of using Eq. (33) for 
proving ORR can be found in the pioneering work 
of Miller [17]. Moreover, the methodology for 
deriving Eq. (33) can be found in the work of 
Lorimer [25],[28] for the frame of reference for 
diffusion in membranes and liquids.  However, 
Lorimer [25] used the equality between friction 
coefficients (Eq. 29) as an arbitrary assumption. In 
this work Eq. (29) was derived either as a 
consequence of the Galilean invariance or as a 
consequence of the relation between driving 
thermodynamic forces (see Eq. 7 and Eq. 25).  
From a theoretical point of view this work shows 
that the ORR can be viewed as a consequence of the 
Galilean Invariance (GI). The GI causes the 
invariance of dissipation function as well as the 
friction coefficients invariance, regarding the 
reference system of fluxes.  Moreover, it can be 
shown that in the presence of a magnetic field the 
Galilean invariance is replaced by the Lorentz 
transformations and in this case the Onsager´s 
reciprocal relations have a different form [2]. 
 
 
4.   Conclusions 
In the present work an alternative proof is given of 
the Onsager´s reciprocal relations for multi-
component isothermal diffusion in the presence of 
external forces (absence of mechanical 
equilibrium). This proof due to its simplicity 
eliminates any doubt about the ORR for isothermal 
diffusion. It is believed that this proof may be 
generalized to other processes than isothermal 
multi-component diffusion thus leading to a 
generalized framework for irreversible 
thermodynamics.  
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