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Abstract: - Synchronous or time-synchronous averaging is a technique used to improve SNR in cyclical 
systems. We describe the operation of synchronous averaging and highlight the advantages and 
disadvantages of the procedure. This information is then used to suggest how the technique should be most 
effectively applied when monitoring renewable-energy devices, particularly wind turbines and wave-energy 
generators. These devices have their own distinct characteristics that make this a worthwhile exercise. 
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1 Introduction 
There are many types of mechanical system that 
execute cyclical motion. Most common are 
reciprocating machinery such as motors and 
generators. It is now recognised that significant cost 
saving can be achieved in large rotating systems by 
implementing a condition-monitoring regimen with 
the objective of discovering problems as they are 
beginning to develop and before catastrophic failure 
occurs [1]. Condition monitoring is facilitated by 
fitting acoustic and vibration sensors at critical 
points such as bearing positions and gearboxes. The 
information coming from the sensors is analysed, 
usually by an automated system, and a change in 
signal quality is considered the early indication of 
an emerging problem. 

The difficulty with such systems is that the 
sensors pick up vibration from all sources, with 
unrelated signals coupled through the frame of the 
machinery and via the air; signals may also be 
affected by electrical pick-up in what are often 
electrically noisy environments. Because of these 
accumulated effects, the signal is sometimes 
severely contaminated. A fault indication 
characterised by an anomalous frequency 
component growing over time may need to achieve 
significant amplitude to rise above the noise, with 
the result that problem detection is delayed.  

Is there any way to improve the signal-to-noise 
ratio (SNR)? One obvious method is to acquire data 
over many data cycles, N, and average over each 
cycle, point for point. Extraneous noise will then be 

reduced by cancellation due to its random nature 
and only the signal synchronised with the rotation 
(which is reinforced) is retained. Theoretically, such 
a procedure should improve the SNR by a factor 

N .  The problem though is that rotating 
machinery, even if speed-regulated by a governor, 
will show significant cycle-to-cycle rotational speed 
variation. In conventional systems data is normally 
acquired at regular time intervals, and following this 
with a direct averaging procedure will simply smear 
the data.  It is instead necessary to match the 
incoming data with the angular position of the 
machine (the crank angle) and average the values at 
the same set of regularly-spaced angular positions 
over many cycles. A position sensor normally 
identifies the 0o reference position, in some systems 
called the top-dead-centre (TDC), and marks the 
beginning of each cycle. Early systems used a 
hardware PLL frequency multiplier applied to the 
reference signal to generate regular sampling pulses 
at the correct angular positions within the cycle [2], 
but recent increases in computer processing power 
means that current systems now interpolate the 
angular position from the analysis of an over-
sampled data set [3].  The two methods are 
contrasted in Fig. 1.  

The procedure described is called synchronous 
averaging (SA), and is very effective at improving 
SNR. It also obviates the need for a windowing 
correction when transforming into the frequency 
domain by a Fast Fourier Transform (FFT).  
However, whilst a useful technique, synchronous 
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averaging must be carefully applied as it relies on 
some basic assumptions about the nature of the 
machine cycle, assumptions that are only 
approximated to in practice (though this fact is often 
overlooked). An understanding of these issues 
allows corrections to be made to the basic 
procedure, or if this is not possible, we can at the 
very least get a realistic estimation of the error. 

 
Figure 1 The sensor generates a single tachometer pulse at 
TDC. The bottom half of the diagram shows how, in this 
example, 24 equally spaced measurement pulses derived from 
the period between the previous two tachometer pulses and 
generated by hardware are used to directly activate the ADC. 
The pulses will be inaccurate if ∆ti <> ∆ti+1 but the advantage is 
that the software processing requirements are negligible. In the 
top half of the diagram, the ADC gathers data at high speed 
with the datum nearest each TDC is marked. The file is later 
post-processed to match each data point with an angular 
position using interpolation. This method is processor intensive, 
but potentially much more accurate because the sampling 
interval is based on the current cycle, not the previous one as is 
the case with the hardware multiplier. 
 

We will show how the technique may be 
applicable to renewable energy systems; these are 
systems with their own distinctive mechanical 
characteristics and are worthy of separate 
consideration. We are reviewing the use of 
synchronous averaging as a tool used in currently 
active renewable energy research projects at the 
University of the Highlands and Islands and 
attempting to determine best practice. 

 
2 Applications of SA 
The first assumption underpinning synchronous 
averaging is that the time duration of the effect 
being measured scales linearly with rotation 
frequency. The second assumption is that the 
angular speed (which may vary between cycles) is 
constant over any particular cycle. If the system 
being measured does not satisfy these criteria, the 

averaged data will not be a true reflection of the 
performance of the system. The SNR will be 
improved regardless, but the final averaged trace 
may only be useful for a qualitative evaluation 
rather than a quantitative assessment. These issues 
are important as we can see by considering 
situations related to renewable energy system where 
synchronous averaging might be applied. 

 
2.1 Conversion of Large Diesel 
Engines to Hydrogen 
Large diesel engines are still of 
some interest as the world moves to 
the new and cleaner hydrogen 
economy. There are many 
functioning engines available (for 
example, as a result of the 
decommissioning of marine 
vessels), with power output ranging 
from 50 kW to 3 MW. It would be 
useful to adapt these to run on 
hydrogen as a backup in the event 
of problems with fuel cell systems 
(or power line faults). 

However, there are some technical problems 
with the conversion of these machines to run on 
hydrogen. Diesel engines rely on the heat rise 
associated with the compression cycle to ignite the 
fuel mixture. The combustion temperature of 
hydrogen gas (585oC) is much higher than that of a 
diesel aerosol (210-250oC). Injecting hydrogen 
instead of diesel would not work: the hydrogen will 
simply not ignite [4]. One straightforward way of 
modifying the system is the development of a 
hybrid system using a fuel mixture, the major 
component of which is hydrogen. The mixture may 
include ether, which has a self-ignition temperature 
of only 188oC, and diesel. However careful control 
of the quantity of fuel injected is necessary if the 
cylinders (and the engine) are not to be damaged by 
excessive pressure. In developing such a system, it 
is essential that a highly accurate indicator plot (a p-
V diagram) be obtained by direct measurement. This 
information is used to carefully balance the mixture. 

A piezoelectric pressure sensor connected into a 
small orifice drilled in the cylinder can be used to 
monitor the pressure over the cycle. The output 
from the pressure sensor may be noisy and it is 
difficult to see detailed features in the indicator plot 
such as the opening of closing of valves in the data 
from one cycle. A typical plot of the performance a 
single cylinder of a 2 MW Mirrlees V12 engine is 
shown in Fig. 2. 
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Figure 2 Typical indicator plot for a large diesel engine. Inset 
shows the noise level (Cylinder 3, Engine 1, Stornoway Power 
Station, 2005). 
 

The noise also makes it difficult to see the exact 
injection point. In cases like this, synchronous 
averaging could significantly improve the data 
quality. There is also considerable variation 
between curves over each firing cycle (because of a 
variation in the injection point), therefore an 
average is more representative of the performance 
of the engine than any single trace. The first 
requirement for the use of synchronous averaging is 
absolutely met: The engine cycle is tied into the 
movement of the drive shaft – there is direct 
coupling between the engine volume and the crank 
angle. What this means in practice is that if the 
pressure–time curve takes on a certain shape at 
rotational speed ω then the pressure curve is 
squeezed by a factor of two (in time) when the 
speed is 2ω. The dependence on time is later 
removed by the synchronous averaging rescaling 
procedure. 

Fig. 3 shows the effectiveness of the averaging 
procedure. The trace is significantly improved. 
However, it was found in this example that energy 
and work calculations from the graph were in error 
by several percent. This is a big problem when we 
are planning to adopt the same method to optimise 
the performance of the engine by tweaking the fuel 
mixture and injection time (or indeed for doing any 
scientific work). It emerges that the source of the 
error is that the second requirement for the effective 
use of synchronous averaging is not met: The 
rotation speed changes significantly within a engine 
cycle because of the impulse acceleration effect as 
each cylinder fires. In the Mirrless  V12 engine, a 
cylinder fires every 60 degrees and disrupts the 
even motion of the shaft. The effect is never 
completely smoothed, regardless of the nature of the 
load or the size of the flywheel.  

 

 
Figure 3 SNR improvement with 50 cycles of synchronous 
averaging. The red area is the difference between the pressure 
trace with and without fuel injection and is a measure of the 
work done   (Cylinder 3, Engine 1, Stornoway Power Station, 
2005).  

This problem is completely resolved by 
extracting secondary angular information from a 
gear wheel on the shaft using an inductive sensor 
(or any toothed wheel, perhaps one used to 
manually turn the engine). This is digital re-
sampling [2] and gives absolute angular reference 
points within the cycle and allows a profile of the 
angular acceleration to be obtained1. The modified 
procedure is extremely effective and gives plots that 
are consistent with calculations by other means of 
the work being done by the piston. This solution is 
now available on commercial diesel engine 
monitoring systems [5]. Using this system, it is 
possible to experiment with fuel mixtures whose 
dominant content is hydrogen to fine-tune the 
performance of large diesel engines following 
conversion. 

Where the curve is very distinctive (as is the 
case here with only two turning points per engine 
cycle), one might ask if a TDC sensor is required at 
all; after all the angular information is technically 
already contained in the trace (though admittedly 
contaminated by noise). The pressure rise during the 
pressure stroke prior to ignition is a feature of the 
geometry of the cylinder and will be identical for 
each cycle. Only the shape of the curve around and 
after injection will vary. Can we lock onto a true 
angular reference point by data analysis alone and 
avoid having to fit a TDC sensor? This will then be 
the basis of a synchronous averaging process 
implemented in software. We can certainly define a 
threshold pressure that will be identified as the 
beginning of the cycle. The problem is that if the 

                                                 
1 It is also possible to get absolutely accurate using an optical position 
sensor attached to the shaft. There are Gray Code or grating wheels that 
can generate 3600 pulse per cycle. However, connecting such a sensor 
arrangement to the system is technically difficult. 
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mean noise amplitude is ψ bar then there will be 
angular error around the threshold of δφ, equivalent 
to trigger source jitter. This is given by  

 

,
p∂

∂±= φψδφ     (1) 

 
where p is the pressure. The optimal trigger level 

is where the rate of pressure increase is greatest, and 
for many applications software triggering based on 
a noisy threshold is viable if one can accept the 
associated angular error. In the specific example of 
Fig. 2 and 3, the maximum pressure rise is 2 bar/deg 
and the noise amplitude is about 0.5 bar. The 
angular error represents a relatively variation of 1 
degree in our estimate of the fuel injection point.  

For precise work, more discriminating strategies 
are available - we might try to fit the expected shape 
of the curve from 10% to 30% of the peak pressure 
to the data and get a best fit. This is only possible if 
the shape of the compression curve is precisely 
known – it is a complex function of the dynamics 
and geometry of the engine  

One very interesting alternative is to use a neural 
network to learn the shape of the portion of the 
curve up to the injection point. A backpropagation 
network using a small number of log-sigmoid 
neurons in the first layer will force the network to 
converge to the underlying shape of the curve and 
ignore the noise [6]. If too many layer 1 neurons are 
used, the network will over train and try to learn 
about the noise. This is undesirable. The structure of 
an appropriate network is shown in Fig. 4. 

 
 
 
Figure 4 A neural network to learn the underlying structure of 
the indicator curve. The number of neurons in the Log-Sigmoid 
layer can be between 3 and 10. 
 

Tests are being conducted using this procedure 
to accurately define a reference point by software 
analysis methods only and the results will be 

reported elsewhere. Although software triggering is 
possible, there is still the problem of speed variation 
over the cycle to be addressed. 

 
2.2 Vibration Analysis of Wind Turbines 
Vibration analysis of rotating machinery can detect 
wear or cracks in gear teeth, or problems with 
bearings. These problems are often brought on by 
rotor misalignment or a balancing problem, or just 
by normal wear [7]. In contrast to the previous 
section, the signal output from a vibration sensor is 
in general of low amplitude and very noisy – there 
is no characteristic ‘shape’ to the data. This is a real 
problem because the characteristic noise associated 
with a faulty bearing is very small, particularly if 
the bearing is large and slow moving. Synchronous 
averaging has proved an extremely effective noise-
reduction technique for gear teeth problems 
allowing tiny spectral features to emerge following 
an FFT [8], but is only effective in special 
circumstances when diagnosing bearing (and drive 
belt) problems. This is because the rolling of 
bearings is generally not synchronised with the 
rotation frequency of the shaft. Problems with gears 
are strongly coupled with the rotation and scale with 
it. Moreover bearing problems do not necessarily 
scale because of slippage and resonance effects. A 
recommended approach when applying averaging to 
bearing problems is to convert each cycle to a 
normalised spectrum and perform a spectral 
average.  

We have seen that changes in angular velocity 
over a cycle cause a problem when we are 
implementing synchronous averaging. The causes 
may be the firing acceleration of the cylinders of an 
engine or changes in the load on motorised systems. 
The wind turbine is no exception; it is vulnerable to 
rapid variations in speed because of the gusting 
nature of strong wind [9]. The effect might seem 
less problematic in larger turbines (2 – 3 MW), but 
not so. The larger blades turn slower and the 
duration between tachometer pulses is 
correspondingly longer.  As in the previous section, 
it is necessary to use secondary pulses obtained 
from gear wheels to effectively implement 
synchronous averaging with wind turbines.  

However wind turbine differs from most 
machinery in the range of speed variation in its 
normal modes of operation. Most machinery works 
at more-or-less the same speed or set of speeds, but 
the wind turbine is at the mercy of the elements. 
This need not be a disadvantage because it permits 
us to examine the operation of the system over a 
range of stresses and conditions, effectively adding 
a dynamical element to the monitoring process.  
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We can illustrate how this might work by 
considering the human heart as an analogy. The rate 
at which the heart beats can vary from 0.6-5 Hz but 
the action of the pump does not linearly scale – the 
speed of muscle contraction is largely constant as 
are recovery times. A characteristic electrical trace 
of the heart (the EKG or ECG) can be used to 
diagnose problems [10]. A typical trace is shown in 
Fig. 5 and is generally noisy because of the low 
amplitude of the signal picked up by sensors on the 
surface of the skin.  

 

 
Figure 5 A typical trace from an ECG recording. 

 
It is possible to perform synchronous averaging 

because the large peak can act as a trigger point for 
use by software (a described in Section 2.1), but to 
do so would merely distort the signal because the 
characteristic electrical activity does not 
conveniently scale.  The solution is to monitor a 
subject over a long period. The quantity of data 
acquired is then large and it is feasible to group 
each trace in bins of single integer heartbeat rate. 
Averaging in each bin is now possible with little 
distortion. Following averaging, we can show all 
the clean traces as a waterfall diagram to reveal the 
dynamic features. Fig. 6 shows the output from a 
program developed to group, average and display 
ECG data. 

The ECG example is an extreme case, but this 
method of grouping cycles may be applicable to all 
mechanical systems where there is a large and 
varied range of data available. A change in 
characteristic with speed can provide important 
information about the operation of the system. With 
wind turbines, where we are also awash with data, 
cycles can be grouped by speed in bins of width 1 to 
10% (depending on memory). The cycles in each 
bin are averaged using synchronous averaging to 
give a characteristic trace for that speed. One can 
compare the averaged clean trace as it changes with 
speed to find speed dependent effects.  

Why would this be important? It permits us to 
find resonances in the system, possibly associated 
with the bearings, and discern frequency-dependent 
effects that are destroyed by the indiscriminate 
application of synchronous averaging. It is proposed 
therefore that, the wide range of data available from 

wind turbines should be exploited to provide more 
information about the system to the diagnostic 
engineer. It is possible to improve SNR whilst 
retaining effects that do not scale with speed. This 
idea is currently being tested with medium-sized 
wind turbines. 

Vibration information is best interpreted in the 
frequency domain and efforts have been made to 
create automated fault diagnosis systems from 
vibration analysis data using neural networks. A 
Self-Organising Feature Map has been used 
effectively to monitor large cranes [11]. Such 
systems could be applied to wind turbines 
monitoring. 

 
Figure 6 A graph of averaged binned ECG data showing the 
changing shape with pulse rate.  

 
2.3 Energy from Waves 

Waves and tides are two distinct sources of 
energy. Tidal power originates from the force of 
gravity but waves are generated by the action of 
wind on the surface of the oceans. Of the two, wave 
power is potentially a more promising source of 
renewable energy, not least because the 
characteristic frequency is around 0.3 – 0.05 Hz 
compared to the diurnal variation in the tides.  
Although water waves are longitudinal, the vertical 
motion is converted into a surge flow as the waves 
hit land.  

Although there are very few operational devices, 
the energy can theoretically be extracted in a variety 
of ways. One technique is the oscillating column 
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method [12]. The rise and fall of the water at the 
base of column partially submerged in the water 
acts as a piston compressing and decompressing 
enclosed air, the resulting pressure difference 
driving a turbine at the end of the column. In effect, 
wave power is converted back to wind power. This 
may seem inefficient is that only a small proportion 
of the energy available in the wave is utilised, but 
the energy is more controllable because of the air 
buffer – many previous attempts to utilize wave 
energy have failed because of the destructive power 
of waves under storm conditions [13]. 

The displacement of the surface can be described 
by a sum of sinusoids over a range of frequencies. 
The peaks are not therefore simply periodic but a 
particular wind speed produces a characteristic (and 
distinct) spectrum [14]. It is known that water 
waves are slow to develop and persist over great 
distances. Monitoring the water level and 
performing a Fourier Transform to extract the 
spectral detail can be used for prediction. Whilst 
there are advantages in merely monitoring the 
height and frequency of waves, for example to learn 
about the conditions at sea where they originated, or 
to maximise energy transfer by the resonant 
coupling of the air column with the driving force, 
our focus here is on the effective monitoring of the 
generators used to produce the power. 

The oscillating column turbine is exposed to a 
quite different driving force to a standard wind 
turbine and this must influence the way it is 
monitored. The driving force is oscillatory with 
clear peaks and troughs and will be subject to 
different wear conditions and will be exhibit 
different failure modes. Whilst the noise associated 
with the rotating parts can be reduced as before by 
applying synchronous averaging using the 
tachometer pulse from the rotating shaft, it should 
be recognised that the this motion will not be 
synchronised with the driving force. If, in parallel, 
we also synchronise averaging with the driving 
force, we will detect the effect of the impulsive 
force on the blades and other parts of the system. It 
is therefore possible to synchronise with any 
available trigger to isolate factors from different 
sources. This technique becomes be especially 
useful if extended to wave energy generators in 
direct contact with the sea water where the forces 
are very much greater and potentially damaging. 
Although planned and predictive maintenance is 
very much more complex when we have no real 
control of the driving forces, monitoring in these 
situations is especially important. 

  

3 Conclusion 
With the urgent need for renewable sources of 
energy, we can expect dedicated machinery to 
proliferate. Although these machines are by no 
means novel or based on any new principle, they 
differ from the machines we routinely monitor. 
They have operational rather than functional 
characteristics that are sufficiently distinctive that 
we must modify the standard monitoring methods to 
making the monitoring of the renewable systems 
effective.  

The fundamental distinction is that conventional 
machines are under our control; the power source of 
renewable energy generators is not. This is a 
fundamental difference that should be recognised in 
condition monitoring. 

We have proposed that synchronous averaging is 
applicable to engines converted to run hydrogen, the 
monitoring of wing turbines and wave energy 
systems, in each case with modifications that both 
recognise the limitations of synchronous averaging 
and the salient and often distinct characteristics of 
the renewable energy systems. 
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