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On Asymptotic Behavior of Solutions of a Perturbed Non—Steady
Stokes Equation in an Exterior Domain
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Abstract: - We formulate sufficient conditions for partial uniform boundedness of the analytic semigroup generated
by a perturbed non—steady Stokes operdtdn an exterior domain. In spite of the existence of an essential
spectrum, we show that the partial (or full) uniform boundedness of the semigroup depends on the behavior of the
resolvent operator of on a finite dimensional space.
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1 Introduction OperatorA is called the Stokes operator. It is a self-
adjoint operator inH|, such that its spectrura(A)
We suppose thd® is an exterior domain ifR? with coincides with the interval—oo, 0]. Moreover, it is

a smooth boundargf2. In this paper, we deal with essentially dissipative. It means that¢, ¢)o < 0
asymptotic properties of strong solutions of the linear forall ¢ € D(A) and(A¢, ¢)o =0 <= ¢ = 0.

perturbed Stokes problem We further denote
Ly |12 L\
B+ Chu+ (U-Viu+ (u-V)U ully = H(—A) / uHO - (/ Vu da:)—.
Q
= —Vp+vAu inQx (0,400), (1) _ _ _
dve — 0 nQx (0,45), (2) o Hj is the completion 0€3°(€2) in the norm|| . ||;.

o If w € Hy thenU - Vu andw - VU belong to

w — 0 on 9% x (0, +00) (3) L*(Q)3. Foru € H;, we put

where¢ € R and Bu = —1II,(U - V)u — Iy (u - V)U.

VU € L*(Q)° N L*2(Q)°, (4) o The subscripts denotes the symmetric part of an
U e L°(Q)° 5) operator or a matrix. ThugVU), = ; [VU +
(VU)T] and -
for somes € [3, +o00].
We shall[use thle notation: Bsu = —Ils[u- (VU)s].
o UG, (£2) is the space of divergence—free vector o The subscript: denotes the skew-symmetric
functionsw € C§°(92)3. (= anti—symmetrlic) part of an ogerator or a matrix.
o Hyisthe closure of§% () in L*(22)*. The scalar Thus,(VU)a = , [VU — (VU)"] and
product inHj is denoted by., .)o and the corre- B,u = B%u+ Blu
sponding norm by} . ||o. Hy can be characterized where
as a space of functions frofi? (Q2)? whose diver-
gence equals zero i in the sense of distributions Bju = —(ll,;0u,
and the normal component equals zerodsi in Blu = —II,(U-V)u—IL[u- (VU),).
the sense of traces.
o We put

o II,, isthe orthogonal projection df?(£2)? onto Hy.

o Au = vil,Auforu € D(A) = HynWr(Q)*n Lu = Au+ Bu = Au+ Bsu + Bou
W22(Q)3. foru € D(L) = D(A).
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o o(L) denotes the spectrum é@fandp(L) denotes
the resolvent set af.

Obviously, I can be considered to be a perturbed
Stokes operator with the disturbanBe Asymptotic
properties of operatof, play a fundamental role in
studies of asymptotic properties of solutions of the
Navier—Stokes equation in a neighborhood of a steady
solutionU..

Applying projectionl], onto equation (1), we can
exclude the ternVp. Consequently, the problem (1)—
(3) can be written in the form of the operator equation

(6)

in spaceH,. (The dot denotes the derivative with
respect tot.) Under solutions of equation (6) (and
similar equations we shall deal with) on a time interval
[0,T) (whered < T' < 4o00), we understand functions
u satisfying equation (6) a.e. i), 7") and such that

uw = Lu

u € L*(J; D(A)) N L*(J; Hy),
w e L*(J; Hp)
for each bounded intervdl C [0, 7). It can be proved

by means of the theory of interpolation spaces that
can be redefined on a set of points fral7") of

measure zero so that it becomes a continuous mapping

from [0,7T") to H;.

Stability of the zero solution of the equation of
the type (6), possibly also with a nonlinear term, has
already been studied for along time. Letus e.g. men-
tion the works by D. H. Sattinger [15], K. Masuda [9],
H. Kielhofer [5] and [6], P. Maremonti [8], G. P. Galdi
and M. Padula [3], W. Borchers and T. Miyakawa [2],
G. Mulone [10], S. Lombardo and G. Mulone [7], and
J. Neustupa [12], [13]. Some of these works show
that if functionU is in some sense “sufficiently small”
then operatoll is negatively definite (possibly in a
modified scalar product) and this property can be used
to show that the zero solution of equation (6) is stable.
Another condition which usually also implies stability
of the zero solution of equations of the type (6) is the
condition

(i) There exists) > 0 such thatRe A < —¢ for all
A€ o(L).

In this paper, we do not use a requirement on smallness

of U and we also cannot use condition (i) because
our considered operatdr has an essential spectrum
which touches the imaginary axis, independently of the
concrete form of functio®/. (See K. |. Babenko [1].)

In this paper, we formulate other sufficient conditions
for stability (or partial stability) of the zero solution of
(6) which are also mostly based on spectral properties
of operatorL and which replace the role of (i).

2 Auxiliary results

Using mainly the Hlder inequality and inequalities
following from theorems on continuous imbedding,
we can derive the inequalities

1Bsollg < eillel, (7
(Bs¢,$)ol < c2llbllullely, (8)
1Balls < 1l Adllg+es(u) ol (9)

with > 0 arbitrarily small. Moreover, using inte-
grability properties of functio/, we can show that
operatorsB; andB}L are A—compact inH,.

Lemmal Leta € R. Then the operatod + aB;

is selfadjoint. The spectrum of + a B, consists of
the essential part which coincides with the interval
(—o0,0] and of at most a finite number of positive
eigenvalues, each of whose has a finite algebraic mul-
tiplicity. If 0 is an eigenvalue ofl + a B, then it also
has a finite algebraic multiplicity.

Proof.  OperatorA is selfadjoint. OperatoB; is
symmetric. Estimate (7) implies that

laBs@|2 < acy (—Ap, ¢)o
< ulAgllo + C(w) ¢l

where . can be chosen arbitrarily small. Thus, the
operatorA + aB; is self—adjoint.

The essential spectrum is preserved under a rel-
atively compact perturbation. SineeB; is such a
perturbation ofA4, the spectrum ofd + a B, contains
the essential part which coincides with-co, 0] and
at most a countable number of positive eigenvalues
which can possibly cluster only at point zero and each
of them has a finite algebraic multiplicity. By deeper
analysis of the space spanned by all associated eigen-
functions, using the fact thdlip||x = (aB;so, qb)(1]/2
is a norm in this space and showing that the unit
sphere is compact, we prove that this space is finite—
dimensional. O

Let x > 0 be chosen. LeE/(\) denote the reso-
lution of identity corresponding to the selfadjoint op-
eratorA + (1 + k) B;. Put

+o0o
P’:/ dE()), P'=I-P
0

andH{, = P'H,, H| = P"H,. P’, P" are orthogo-

nal projections inH and H\), H// are closed orthog-

onal subspaces df, such thatd, = H) ® H{.
ProjectionsP’ and P” commute withA +

1+
k)BsonD(A+Bs+kBs) = D(A)andsaP’D(A) C
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D(A) and P"D(A) C D(A). Moreover, due to the
right continuity of the function®(\)¢ (for eache €
H,), if 0 is an eigenvalue ofi + (1 + ) B, then all
corresponding eigenfunctions belongHtj.

The spacé|) is finite—dimensional due to Lemma
1. Using the expansion aP’vy with respect to the
orthonormal basis off/, formed by the eigenvectors
of A+ (1+ k)Bs (for ¢ € Hy N H;), we can show
that

1Pl < callgplly-

If € H] N D(A)then((A+ Bs+kBs)p, d)o <0
and consequently,

(10)

( A + B ¢7 ) a ¢)O
— ( A+ By + £By)o, ¢>)0
< — (A9, 9)o = ¢ [E=llks (11)
wherecs; = /(1 + k). We shall further use this
estimate. It cannot be generally excluded that the

estimate((A + By)é, d)o <
some positive constant, for all ¢ €
also in the case whern = 0.

—cg ||@||? holds, with
H[ n D(A),
In such a cases can

(R, denotes the interval0, +o00).) Hj is a finite—
dimensional subspace @&,. Thus, condition (ii) is
the condition on the asymptotic decay of a finite num-
ber of functions. We discuss the question of validity
of condition (ii) in Section 4.

Lemma?2 Letr > 0andr < T < +o0. Functionu
is a solution of equation (6) on the time interyal T")
if and only ifu = v + w, wherev, w is a solution of
the system

v = Av+(1+k)Bsv+ P (B, — kBs)v (13)
w = (A+ By+ By)w+ P'(B, — kBs)v  (14)
on[r,T), satisfying the initial conditions

v(1) = P'u(r), w(r) = P'u(r). (15)

Proof. Itis obvious that ifv, w solve (13)—(15) then

u is a solution of (6). On the other handqifsatisfies
(6) then we can use properties of operatdrs3; and

B, and prove that the equation (13), together with the
first initial condition in (15), has a unique solutien
Puttingw = u — v and subtraction equations (6) and
(13), we can finally show thab is a solution of equa-
tion (14) which satisfies the second initial condition in

also be chosen to be equal to zero. Otherwise we shall (15). O

needk to be positive.

3 Partial uniform boundedness of
the semigroupe’

The Stokes operatod generates an analytic semi-
group in spacdd. (See e.g. Y. Giga and H. Sohr [4].)
Operator¢0; is an A—bounded operator i, with

a relativeA—bound arbitrarily small. (It follows from
the estimate| (12 < [¢] [[¢]F = [¢] (—Ag, $)o
which holds for all¢p € D(A).) Furthermore, esti-
mates (7) and (10) imply that the operatésand B,
are A—bounded with an arbitrarily small relativé—
bound, too. Thus, the operatbr= A+ (9, + Bs+ B,
also generates an analytic semigrougHp.

We shall further assume th&tis a bounded op-
erator inHy. We shall denote by, (L) the resolvent
of L. For\ € p(L), Rx(L) is a bounded operator in
H, analytically depending oh. We shall further use,
as an important assumption, the condition

(i) There exists a functiop € L?(R, ) such that
IPe"llo < o(t) l|9llo (12)

for eachg € HJ).

The next theorem presents the main result of this
section.

Theorem 3 Suppose that functioly has the proper-
ties (4), (5). Suppose that operatbrsatisfies condi-
tion (ii). Then there exist positive constantscs such
that if 7 > 0 then there exists a unique solutionw
of the problem (13)—(15) on the time interyal+o0),
which satisfies

[l + o (®)1 + | Pw(®)]3
ter [ (o) + 14v(s)]) ds
< ¢ (@I + oI + lw(r)F) (26)

(forall t > 7)and

JimJo(®)]: = 0. (17)
Proof. Equation (13) is the equation in spafF).

Multiplying it by » and using (8) and (11), we obtain:

d1
S Lol < —es ol + s(B.v),
k(P"Bsv,v)o + (P"Byv,v)o
= —csvlf}. (18)
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Multiplying equation (12) by(—Aw) and using (7),
(10) and (11), we get

d1

S50l =~ 40 + w(P'Bv, ~ Av)o

+ (P"Byv, —Av)y < —||Av|[3
+ k|| Bsvllo [[Av]o + || Bav|lo [ Av]lo

IN

3
=7 140l + 267 By [§ + 2| Bav]lg

IN

3
=7 140l + 2%eq [[v][T + 21 [| Av]lg

+2c4(p) [JolI7.

Choosingu; = £, we obtain
d1
< Lol < — 4ol

+ [2%: c1 —1—204( )] Hle (29)

Estimates (18) and (19) imply thatdf is chosen so
thatcg [21@201 + 2¢4 (é)} = %05 then

< (1ol + eo ol?)

+ (es 0] + o | 4v]3) < 0.
Integrating this inequality from to ¢, we obtain
[0 ()15 + co o (D)1}
t
+ [ (o)} + e 40()]F) s

< w5+ e lo(n)I1} (20)

Denote by, ..., ¢, is the orthonormal basis
of the spaceH,. We shall further use the estimates

IP'Bywllo < ) |(Baw, ¢y)ol

k=1

/Q{(U-V)v~¢k+§81fu-¢k

M=

<

e
Il
—

v (VU)o ¢y da
S ol 10 eIl + Cnllols
k=1

IN

Z [0l zs (VU )all s |l o
k=

(21)

wherel/r +1/s = 1 and consequentl®, < r < 6.
Solutionw of equation (14) satisfies the integral
equation

w(t) = eL(t_T)'w(T)

t
—I—/ M=) P'(B, — kBs)v(s) ds.

< o H’U||1

Using (7), (12) and (21), we obtain
[Pw(t)llo < [P Dw(r)]q

t )PeL(t*S)P’(Ba - ﬂBS)v(s)HO ds

< ¢t —7) lw(T)llo
" /:go(t—s) |P(Ba — kB.yo(s)]| ds
< ot =7) [lw(7)llo
I
Hence '
IPw(t)|[f < 20t —7)* [lw(7)]3
+2¢12 /Tt||v(s)H%ds.
Estimating the integral by means of (20), we get

IPw(®)If < 2p(t —7)* |lw(7)]j

+ers [[o(7)[§ + cua o (7). (22)

Now we obtain the inequality (16) if we sum (20) and
(22).

Estimate (19) shows that the derivative |af|?
with respect to time is upper bounded. This infor-
mation, together with the integrability dfv||? on
(1, 400) (which follows from (16)), implies (17).

O

The inequality (16) particularly says that

lo(®) 3 + lo(2) 3 + | Pew(®)3
< s (@I + oI + [w(n)3)  (23)

By analogy, using only (18) and not (19), we can obtain
the estimate

(@)1 + Pe(®)];
< es (@I + (IR

It would imply the uniform boundedness of the semi-
groupe™ in the norm|| . [[o if we had [|w(t)||§ and
not only || Pw(¢)||3 on the left hand side. However,
since the left hand side represents only a part of the
total norm||u||2 (Whereu = v + w), we call the type
of boundedness we have proved thetial uniform
boundedness

On the other hand, the freedom in the choice of
the bounded operatd? offers interesting opportuni-
ties. One of them is a projection onto a finite di-
mensional subspace dily; Theorem 3 in this case
provides the information on asymptotic behavior of

(24)
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solutionu of the equation (6), projected into the cho-

sen finite—dimensional subspace. Nevertheless, let us

further explain in greater detail another possibility.

Suppose thak is an arbitrarily large positive real
number. We shall denotep = 2N Br(0). Letn be
an infinitely differentiable cut—off function defined in
Q such that

n=1 on Qpi1/a,
0<n<l1 on Qri3/4 — Qri1/4,
=0 on Q—QR+3/4.

We denote byR a linear operator which assigns to a
functiong € L2(Q) a functionRg € Wo*(€)3 such
thatdiv (Rg) = g a.e. inQ. (W 2(Q)3 is the com-
pletion of C5°(2)3 in the norm identical witH| . ||1.)
We put

Pu = nu—R(Vn-u) (25)
foru € Hy. Itis well known thatR(Vn - u) can be
constructed so that its support is a subse®gf ; —
Qr. Then we have
[Pullf = llnw —R(Vn - w)|[3
2 [ (inal + R(VY - W) da
Q

2 Hqu + C’/ IVR(Vn - u)\2 dx
Q

<

IN

2 Hu||g + C’/Q |Vn - u|2 dx

< e ullf, (26)
(C is a generic constant.) These estimates show that
P is a bounded linear operator H .

OperatorR is hot given uniquely. One of possibil-
ities which satisfies the requiremenpp R(Vn-u) C
(Qry1 —Qg)is

R(Vn-u) = Vnp x (27)
where ) is a vector potential ok, i.e. a function
satisfyingu = curl in Q. Then we have

Pu nu—Vnx = ncurly + ¢ x Vnp
= curl(ny).

Thus, if operatol? is defined by (25), the inequal-
ity (23) provides the boundedness (in th-norm) of
functionsv, w (and consequently also of solutien
of the equation (6)) if2g.

4 More on the condition (ii)

In this section, we at first show that condition (ii)
follows from another condition

(i) For each¢ € H|, PR)(L)¢ is a bounded

Hy—valued function of\ in the right half—plane
Ci ={NeC; Re) > 0}.

Ry (L) denotes the resolvent operatorlaf For A
p(L), R\(L) is abounded operator H, analytically
depending orA\. The spectrum of. has the essential
part

Oess (L)

{a+ifeC; —0o < f < +o0,
a < —32/¢%}

(see [1]) and it can also contain at most a countable
number of eigenvalues outsidess(L). Each of them
has a finite algebraic multiplicity and they can possibly
cluster only at the boundary efs(L). Suppose that
¢ € H|. Then the functionPR,(L)¢ is a bounded
holomorphicHy—valued function inC, — M where
M is an isolated set i©'.. Each point ofM thus
represents a removable singularity BR(L)¢ and
if we extend the definition oP R (L)¢ continuously
to M thenP R (L)¢ becomes a bounded holomorphic
function in the whole half—plan€ ..

Let us choose\; € C such thatRe A\; > 0. Put
¥ = (L— X \I)¢for ¢ € H|. Then

PRA\(L)Yp = P(L—-X)""(L-MI)¢
)

P+ (A — A) PRy(L) .

These identities show th& R (L) is bounded and
holomorphic function of variabla in the right half—
plane. Since the spacH, is of the Fourier type
2, Theorem 4.3.2, p. 123, in [11] now implies that
Pel'(L— 1)1y = PeM ¢ belongs tal?(R, ; Hy).
This proves the theorem:

Theorem 4 Condition (iii) implies condition (ii) and
consequently, it also implies the partial uniform boun-
dedness of the semigrouf in the sense of inequality
(24).

The question of validity of condition (iii) in the
case of concrete types of bounded operdeordis-
cussed at the end of Section 3, is further studied in the
paper [14].

5 Conclusion

Obviously, if operatorL is negatively—definite then
the semigroup:’* is uniformly bounded. However,
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If, in spite of this, the semigroue)” = o(A+Bs+Ba)t Sec. |A36,"1989, 10.3—130. )

is uniformly bounded or at least partially uniformly ~ [5] H. KIELHOFER Existenz und Regulait von
bounded, it is only due to the stabilizing influence Losungen semilinearer parabolischer Anfangs—
of the skew—symmetric operatds, in equation (6). RandwertproblemeMath. Z.142 1975, 131-
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