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Abstract: - We formulate sufficient conditions for partial uniform boundedness of the analytic semigroup generated
by a perturbed non–steady Stokes operatorL in an exterior domain. In spite of the existence of an essential
spectrum, we show that the partial (or full) uniform boundedness of the semigroup depends on the behavior of the
resolvent operator ofL on a finite dimensional space.
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1 Introduction

We suppose thatΩ is an exterior domain inR3 with
a smooth boundary∂Ω. In this paper, we deal with
asymptotic properties of strong solutions of the linear
perturbed Stokes problem

∂tu+ ζ ∂1u+ (U · ∇)u+ (u · ∇)U

= −∇p+ ν∆u (1)in Ω× (0,+∞),

divu = 0 (2)in Ω× (0,+∞),

u = 0 (3)on ∂Ω× (0,+∞)

whereζ ∈ R and

∇U ∈ L3(Ω)9 ∩ L3/2(Ω)9, (4)

U ∈ Ls(Ω)3 (5)

for somes ∈ [3,+∞].
We shall use the notation:

◦ C∞0,σ(Ω) is the space of divergence–free vector
functionsw ∈ C∞0 (Ω)3.

◦ H0 is the closure ofC∞0,σ(Ω) inL2(Ω)3. The scalar
product inH0 is denoted by(. , .)0 and the corre-
sponding norm by‖ . ‖0. H0 can be characterized
as a space of functions fromL2(Ω)3 whose diver-
gence equals zero inΩ in the sense of distributions
and the normal component equals zero on∂Ω in
the sense of traces.

◦ Πσ is the orthogonal projection ofL2(Ω)3 ontoH0.

◦ Au = νΠσ∆u foru ∈ D(A) ≡H0∩W 1,2
0 (Ω)3∩

W 2,2(Ω)3.

OperatorA is called the Stokes operator. It is a self–
adjoint operator inH0 such that its spectrumσ(A)
coincides with the interval(−∞, 0]. Moreover, it is
essentially dissipative. It means that(Aφ,φ)0 ≤ 0
for all φ ∈ D(A) and(Aφ,φ)0 = 0⇐⇒ φ = 0.

We further denote

‖u‖1 =
∥∥∥(−A)1/2u

∥∥∥1/2

0
=
(∫

Ω
|∇u|2 dx

)1
2

.

◦ H1 is the completion ofC∞σ (Ω) in the norm‖ . ‖1.

◦ If u ∈ H1 thenU · ∇u andu · ∇U belong to
L2(Ω)3. Foru ∈H1, we put

Bu = −Πσ(U · ∇)u−Πσ(u · ∇)U .

◦ The subscripts denotes the symmetric part of an
operator or a matrix. Thus,(∇U)s = 1

2 [∇U +
(∇U)T ] and

Bsu = −Πσ[u · (∇U)s].

◦ The subscripta denotes the skew–symmetric
(= anti–symmetric) part of an operator or a matrix.
Thus,(∇U)a = 1

2 [∇U − (∇U)T ] and

Bau = B0
au+B1

au

where

B0
au = −ζ Πσ ∂1u,

B1
au = −Πσ(U · ∇)u−Πσ[u · (∇U)a].

◦ We put

Lu = Au+Bu = Au+Bsu+Bau

for u ∈ D(L) ≡ D(A).
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◦ σ(L) denotes the spectrum ofL andρ(L) denotes
the resolvent set ofL.

Obviously, L can be considered to be a perturbed
Stokes operator with the disturbanceB. Asymptotic
properties of operatorL play a fundamental role in
studies of asymptotic properties of solutions of the
Navier–Stokes equation in a neighborhood of a steady
solutionU .

Applying projectionΠσ onto equation (1), we can
exclude the term∇p. Consequently, the problem (1)–
(3) can be written in the form of the operator equation

u̇ = Lu (6)

in spaceH0. (The dot denotes the derivative with
respect tot.) Under solutions of equation (6) (and
similar equations we shall deal with) on a time interval
[0, T ) (where0 < T ≤ +∞), we understand functions
u satisfying equation (6) a.e. in(0, T ) and such that

u ∈ L2(J ; D(A)) ∩ L2(J ; H0),
u̇ ∈ L2(J ; H0)

for each bounded intervalJ ⊂ [0, T ). It can be proved
by means of the theory of interpolation spaces thatu
can be redefined on a set of points from[0, T ) of
measure zero so that it becomes a continuous mapping
from [0, T ) toH1.

Stability of the zero solution of the equation of
the type (6), possibly also with a nonlinear term, has
already been studied for a long time. Let us e.g. men-
tion the works by D. H. Sattinger [15], K. Masuda [9],
H. Kielhöfer [5] and [6], P. Maremonti [8], G. P. Galdi
and M. Padula [3], W. Borchers and T. Miyakawa [2],
G. Mulone [10], S. Lombardo and G. Mulone [7], and
J. Neustupa [12], [13]. Some of these works show
that if functionU is in some sense “sufficiently small”
then operatorL is negatively definite (possibly in a
modified scalar product) and this property can be used
to show that the zero solution of equation (6) is stable.
Another condition which usually also implies stability
of the zero solution of equations of the type (6) is the
condition

(i) There existsδ > 0 such thatReλ < −δ for all
λ ∈ σ(L).

In this paper, we do not use a requirement on smallness
of U and we also cannot use condition (i) because
our considered operatorL has an essential spectrum
which touches the imaginary axis, independently of the
concrete form of functionU . (See K. I. Babenko [1].)
In this paper, we formulate other sufficient conditions
for stability (or partial stability) of the zero solution of
(6) which are also mostly based on spectral properties
of operatorL and which replace the role of (i).

2 Auxiliary results

Using mainly the Ḧolder inequality and inequalities
following from theorems on continuous imbedding,
we can derive the inequalities

‖Bsφ‖20 ≤ c1 ‖φ‖21 , (7)

|(Bsφ,ψ)0| ≤ c2 ‖φ‖1 ‖ψ‖1, (8)

‖Baφ‖20 ≤ µ ‖Aφ‖20 + c3(µ) ‖φ‖21 (9)

with µ > 0 arbitrarily small. Moreover, using inte-
grability properties of functionU , we can show that
operatorsBs andB1

a areA–compact inH0.

Lemma 1 Let a ∈ R. Then the operatorA + aBs
is selfadjoint. The spectrum ofA + aBs consists of
the essential part which coincides with the interval
(−∞, 0] and of at most a finite number of positive
eigenvalues, each of whose has a finite algebraic mul-
tiplicity. If 0 is an eigenvalue ofA + aBs then it also
has a finite algebraic multiplicity.

Proof. OperatorA is selfadjoint. OperatorBs is
symmetric. Estimate (7) implies that

‖aBsφ‖20 ≤ a c1 (−Aφ,φ)0

≤ µ ‖Aφ‖0 + C(µ) ‖φ‖0

whereµ can be chosen arbitrarily small. Thus, the
operatorA+ aBs is self–adjoint.

The essential spectrum is preserved under a rel-
atively compact perturbation. SinceaBs is such a
perturbation ofA, the spectrum ofA + aBs contains
the essential part which coincides with(−∞, 0] and
at most a countable number of positive eigenvalues
which can possibly cluster only at point zero and each
of them has a finite algebraic multiplicity. By deeper
analysis of the space spanned by all associated eigen-
functions, using the fact that‖φ‖∗ = (aBsφ, φ)1/2

0
is a norm in this space and showing that the unit
sphere is compact, we prove that this space is finite–
dimensional. ut

Let κ > 0 be chosen. LetE(λ) denote the reso-
lution of identity corresponding to the selfadjoint op-
eratorA+ (1 + κ)Bs. Put

P ′ =
∫ +∞

0
dE(λ), P ′′ = I − P ′

andH ′0 = P ′H0,H ′′0 = P ′′H0. P ′, P ′′ are orthogo-
nal projections inH0 andH ′0,H ′′0 are closed orthog-
onal subspaces ofH0 such thatH0 = H ′0 ⊕H ′′0 .

ProjectionsP ′ andP ′′ commute withA + (1 +
κ)Bs onD(A+Bs+κBs) = D(A) and soP ′D(A) ⊂
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D(A) andP ′′D(A) ⊂ D(A). Moreover, due to the
right continuity of the functionE(λ)φ (for eachφ ∈
H0), if 0 is an eigenvalue ofA + (1 + κ)Bs then all
corresponding eigenfunctions belong toH ′′0 .

The spaceH ′0 is finite–dimensional due to Lemma
1. Using the expansion ofP ′ψ with respect to the
orthonormal basis ofH ′0 formed by the eigenvectors
of A + (1 + κ)Bs (for ψ ∈ H0 ∩H1), we can show
that

‖P ′ψ‖0 ≤ c4 ‖ψ‖1 . (10)

If φ ∈H ′′0 ∩D(A) then((A+Bs +κBs)φ,φ)0 ≤ 0
and consequently,(

(A+Bs)φ, φ
)

0
=

κ

1 + κ
(Aφ, φ)0

+
1

1 + κ

(
(A+Bs + κBs)φ, φ

)
0

≤ κ

1 + κ
(Aφ, φ)0 = −c5 ‖φ‖21 (11)

where c5 = κ/(1 + κ). We shall further use this
estimate. It cannot be generally excluded that the
estimate((A + Bs)φ,φ)0 ≤ −c6 ‖φ‖21 holds, with
some positive constantc6, for all φ ∈ H ′′0 ∩ D(A),
also in the case whenκ = 0. In such a case,κ can
also be chosen to be equal to zero. Otherwise we shall
needκ to be positive.

3 Partial uniform boundedness of
the semigroupeLt

The Stokes operatorA generates an analytic semi-
group in spaceH0. (See e.g. Y. Giga and H. Sohr [4].)
Operatorζ∂1 is anA–bounded operator inH0 with
a relativeA–bound arbitrarily small. (It follows from
the estimate‖ζ∂1φ‖20 ≤ |ζ| ‖φ‖21 = |ζ| (−Aφ,φ)0

which holds for allφ ∈ D(A).) Furthermore, esti-
mates (7) and (10) imply that the operatorsBs andBa
areA–bounded with an arbitrarily small relativeA–
bound, too. Thus, the operatorL = A+ζ∂1+Bs+Ba
also generates an analytic semigroup inH0.

We shall further assume thatP is a bounded op-
erator inH0. We shall denote byRλ(L) the resolvent
of L. Forλ ∈ ρ(L), Rλ(L) is a bounded operator in
H0 analytically depending onλ. We shall further use,
as an important assumption, the condition

(ii) There exists a functionϕ ∈ L2(R+) such that

‖P eLtφ‖0 ≤ ϕ(t) ‖φ‖0 (12)

for eachφ ∈H ′0.

(R+ denotes the interval(0,+∞).) H ′0 is a finite–
dimensional subspace ofH0. Thus, condition (ii) is
the condition on the asymptotic decay of a finite num-
ber of functions. We discuss the question of validity
of condition (ii) in Section 4.

Lemma 2 Let τ ≥ 0 andτ < T ≤ +∞. Functionu
is a solution of equation (6) on the time interval[τ, T )
if and only ifu = v +w, wherev,w is a solution of
the system

v̇ = Av + (1 + κ)Bsv + P ′′(Ba − κBs)v (13)

ẇ = (A+Bs +Ba)w + P ′(Ba − κBs)v (14)

on [τ, T ), satisfying the initial conditions

v(τ) = P ′′u(τ), w(τ) = P ′u(τ). (15)

Proof. It is obvious that ifv,w solve (13)–(15) then
u is a solution of (6). On the other hand, ifu satisfies
(6) then we can use properties of operatorsA,Bs and
Ba and prove that the equation (13), together with the
first initial condition in (15), has a unique solutionv.
Puttingw = u− v and subtraction equations (6) and
(13), we can finally show thatw is a solution of equa-
tion (14) which satisfies the second initial condition in
(15). ut

The next theorem presents the main result of this
section.

Theorem 3 Suppose that functionU has the proper-
ties (4), (5). Suppose that operatorL satisfies condi-
tion (ii). Then there exist positive constantsc7, c8 such
that if τ ≥ 0 then there exists a unique solutionv, w
of the problem (13)–(15) on the time interval[τ,+∞),
which satisfies

‖v(t)‖20 + ‖v(t)‖21 + ‖Pw(t)‖20

+ c7

∫ t

τ

(
‖v(s)‖21 + ‖Av(s)‖20

)
ds

≤ c8

(
‖v(τ)‖20 + ‖v(τ)‖21 + ‖w(τ)‖20

)
(16)

(for all t > τ ) and

lim
t→+∞

‖v(t)‖1 = 0. (17)

Proof. Equation (13) is the equation in spaceH ′′0 .
Multiplying it by v and using (8) and (11), we obtain:

d
dt

1
2
‖v‖20 ≤ −c5 ‖v‖21 + κ(Bsv,v)0

−κ(P ′′Bsv,v)0 + (P ′′Bav,v)0

= −c5 ‖v‖21. (18)
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Multiplying equation (12) by(−Av) and using (7),
(10) and (11), we get

d
dt

1
2
‖v‖21 = −‖Av‖20 + κ(P ′Bsv,−Av)0

+ (P ′′Bav,−Av)0 ≤ −‖Av‖20
+κ ‖Bsv‖0 ‖Av‖0 + ‖Bav‖0 ‖Av‖0

≤ −3
4
‖Av‖20 + 2κ2‖Bsv‖20 + 2 ‖Bav‖20

≤ −3
4
‖Av‖20 + 2κ2c1 ‖v‖21 + 2µ1 ‖Av‖20

+ 2c4(µ1) ‖v‖21.
Choosingµ1 = 1

8 , we obtain

d
dt

1
2
‖v‖21 ≤ −

1
2
‖Av‖20

+
[
2κ2c1 + 2 c4

(
1
8

)]
‖v‖21 (19)

Estimates (18) and (19) imply that ifc9 is chosen so
thatc9

[
2κ2c1 + 2c4

(
1
8

)]
= 1

2 c5 then

d
dt

(
‖v‖20 + c9 ‖v‖21

)
+
(
c5 ‖v‖21 + c9 ‖Av‖20

)
≤ 0.

Integrating this inequality fromτ to t, we obtain

‖v(t)‖20 + c9 ‖v(t)‖21

+
∫ t

τ

(
c5 ‖v(s)‖21 + c9 ‖Av(s)‖20

)
ds

≤ ‖v(τ)‖20 + c9 ‖v(τ)‖21 (20)

Denote byφ1, . . . , φn is the orthonormal basis
of the spaceH ′0. We shall further use the estimates

‖P ′B1
av‖0 ≤

n∑
k=1

∣∣(B1
av,φk)0

∣∣
≤

n∑
k=1

∣∣∣∣∫
Ω

[
(U · ∇)v · φk + ζ∂1v · φk

+v · (∇U)a · φk
]

dx
∣∣∣∣

≤
n∑
k=1

‖v‖1 ‖U‖Ls‖φk‖Lr + ζ n ‖v‖1

+
n∑
k=1

‖v‖L6 ‖(∇U)a‖L3 ‖φk‖L6

≤ c10 ‖v‖1 (21)

where1/r + 1/s = 1
2 and consequently,2 < r ≤ 6.

Solutionw of equation (14) satisfies the integral
equation

w(t) = eL(t−τ)w(τ)

+
∫ t

τ
eL(t−s)P ′(Ba − κBs)v(s) ds.

Using (7), (12) and (21), we obtain

‖Pw(t)‖0 ≤ ‖P eL(t−τ)w(τ)‖0

+
∫ t

τ

∥∥∥P eL(t−s)P ′(Ba − κBs)v(s)
∥∥∥

0
ds

≤ ϕ(t− τ) ‖w(τ)‖0

+
∫ t

τ
ϕ(t− s)

∥∥P ′(Ba − κBs)v(s)
∥∥

0
ds

≤ ϕ(t− τ) ‖w(τ)‖0

+ c11

∫ t

τ
ϕ(t− s) ‖v(s)‖1 ds.

Hence

‖Pw(t)‖20 ≤ 2ϕ(t− τ)2 ‖w(τ)‖20

+ 2c12

∫ t

τ
‖v(s)‖21 ds.

Estimating the integral by means of (20), we get

‖Pw(t)‖20 ≤ 2ϕ(t− τ)2 ‖w(τ)‖20
+ c13 ‖v(τ)‖20 + c14 ‖v(τ)‖21. (22)

Now we obtain the inequality (16) if we sum (20) and
(22).

Estimate (19) shows that the derivative of‖v‖21
with respect to time is upper bounded. This infor-
mation, together with the integrability of‖v‖21 on
(τ,+∞) (which follows from (16)), implies (17).

ut
The inequality (16) particularly says that

‖v(t)‖20 + ‖v(t)‖21 + ‖Pw(t)‖20
≤ c8

(
‖v(τ)‖20 + ‖v(τ)‖21 + ‖w(τ)‖20

)
(23)

By analogy, using only (18) and not (19), we can obtain
the estimate

‖v(t)‖20 + ‖Pw(t)‖20
≤ c8

(
‖v(τ)‖20 + ‖w(τ)‖20

)
(24)

It would imply the uniform boundedness of the semi-
groupeLt in the norm‖ . ‖0 if we had‖w(t)‖20 and
not only ‖Pw(t)‖20 on the left hand side. However,
since the left hand side represents only a part of the
total norm‖u‖20 (whereu = v+w), we call the type
of boundedness we have proved thepartial uniform
boundedness.

On the other hand, the freedom in the choice of
the bounded operatorP offers interesting opportuni-
ties. One of them is a projection onto a finite di-
mensional subspace ofH0; Theorem 3 in this case
provides the information on asymptotic behavior of
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solutionu of the equation (6), projected into the cho-
sen finite–dimensional subspace. Nevertheless, let us
further explain in greater detail another possibility.

Suppose thatR is an arbitrarily large positive real
number. We shall denoteΩR = Ω ∩BR(0). Let η be
an infinitely differentiable cut–off function defined in
Ω such that

η = 1 on ΩR+1/4,

0 ≤ η ≤ 1 on ΩR+3/4 − ΩR+1/4,

η = 0 on Ω− ΩR+3/4.

We denote byR a linear operator which assigns to a
functiong ∈ L2(Ω) a functionRg ∈ Ŵ 1,2

0 (Ω)3 such
that div (Rg) = g a.e. inΩ. (Ŵ 1,2

0 (Ω)3 is the com-
pletion ofC∞0 (Ω)3 in the norm identical with‖ . ‖1.)
We put

Pu = ηu−R(∇η · u) (25)

for u ∈ H0. It is well known thatR(∇η · u) can be
constructed so that its support is a subset ofΩR+1 −
ΩR. Then we have

‖Pu‖20 = ‖ηu−R(∇η · u)‖20

≤ 2
∫

Ω

(
|ηu|2 + |R(∇η · u)|2

)
dx

≤ 2 ‖u‖20 + C

∫
Ω
|∇R(∇η · u)|2 dx

≤ 2 ‖u‖20 + C

∫
Ω
|∇η · u|2 dx

≤ c15 ‖u‖20 , (26)

(C is a generic constant.) These estimates show that
P is a bounded linear operator inH0.

OperatorR is not given uniquely. One of possibil-
ities which satisfies the requirementsuppR(∇η·u) ⊂
(ΩR+1 − ΩR) is

R(∇η · u) = ∇η ×ψ (27)

whereψ is a vector potential ofu, i.e. a function
satisfyingu = curlψ in Ω. Then we have

Pu = ηu−∇η ×ψ = η curlψ +ψ ×∇η
= curl (ηψ).

Thus, if operatorP is defined by (25), the inequal-
ity (23) provides the boundedness (in theL2–norm) of
functionsv, w (and consequently also of solutionu
of the equation (6)) inΩR.

4 More on the condition (ii)

In this section, we at first show that condition (ii)
follows from another condition

(iii) For eachφ ∈ H ′0, PRλ(L)φ is a bounded
H0–valued function ofλ in the right half–plane
C+ ≡ {λ ∈ C; Reλ > 0}.

Rλ(L) denotes the resolvent operator ofL. Forλ ∈
ρ(L),Rλ(L) is a bounded operator inH0, analytically
depending onλ. The spectrum ofL has the essential
part

σess(L) = {α+ iβ ∈ C; −∞ < β < +∞,
α ≤ −β2/ζ2}

(see [1]) and it can also contain at most a countable
number of eigenvalues outsideσess(L). Each of them
has a finite algebraic multiplicity and they can possibly
cluster only at the boundary ofσess(L). Suppose that
φ ∈ H ′0. Then the functionPRλ(L)φ is a bounded
holomorphicH0–valued function inC+ −M where
M is an isolated set inC+. Each point ofM thus
represents a removable singularity ofPRλ(L)φ and
if we extend the definition ofPRλ(L)φ continuously
toM thenPRλ(L)φbecomes a bounded holomorphic
function in the whole half–planeC+.

Let us chooseλ1 ∈ C such thatReλ1 > 0. Put
ψ = (L− λ1I)φ for φ ∈H ′0. Then

PRλ(L)ψ = P (L− λI)−1 (L− λ1I)φ

= Pφ+ (λ− λ1)PRλ(L)φ.

These identities show thatPRλ(L)ψ is bounded and
holomorphic function of variableλ in the right half–
plane. Since the spaceH0 is of the Fourier type
2, Theorem 4.3.2, p. 123, in [11] now implies that
P eLt(L−λ1)−1ψ ≡ P eLtφ belongs toL2(R+; H0).
This proves the theorem:

Theorem 4 Condition (iii) implies condition (ii) and
consequently, it also implies the partial uniform boun-
dedness of the semigroupeLt in the sense of inequality
(24).

The question of validity of condition (iii) in the
case of concrete types of bounded operatorP , dis-
cussed at the end of Section 3, is further studied in the
paper [14].

5 Conclusion

Obviously, if operatorL is negatively–definite then
the semigroupeLt is uniformly bounded. However,

Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp126-131)



we have already explained that we do not assume that
operatorL is negatively–definite in this paper and on
the other hand, we focus on the case when the numer-
ical range ofL has a non–empty intersection withR+.
Then, clearly, the zero solution of the equation

u̇ = Au+Bsu (28)

is unstable and the semigroupe(A+Bs)t is unbounded.
If, in spite of this, the semigroupeLt ≡ e(A+Bs+Ba)t

is uniformly bounded or at least partially uniformly
bounded, it is only due to the stabilizing influence
of the skew–symmetric operatorBa in equation (6).
Thus, condition (iii) express this stabilizing influence
and it has the same effect as the often used assumption
(i) (See Section 1.) In our situation, i.e. in the case
whenL has the essential spectrum which touches the
imaginary axis, the condition (i) is useless.

The main contribution of this paper is that it
provides a sufficient condition for the partial uni-
form boundedness of the semigroupeLt formulated
by means of a requirement on boundedness of the op-
eratorPRλ(L) (applied to a finite number of functions
which form the basis of spaceH0) in the right complex
half–plane.

The question of boundedness or more generally,
the asymptotic behavior ast→ +∞, of the semigroup
eLt naturally arises if we study a linearized stability
of a steady flow of a viscous incompressible flow in
a domain inR3 which is an exterior of a compact
body. In such a case, we are usually interested in
behavior of disturbances of the basic flow in just a
neighborhood of the body and it is not so important
how the disturbances are damped or amplified “far”
from the body. The freedom in the choice of a bounded
operatorP offers the opportunity to decide where and
how we measure the size of the disturbances and on
the other hand, it also opens a wider field to a possible
validity of condition (iii) than the trivial caseP = I.
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[5] H. K IELHÖFER: Existenz und Regularität von
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