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Abstract: The paper reveals the vibrations of a wagon with two bogies having elastic links and dampers 
between the wagon box and the bogie and also between the wheels and the bogie. The entire system has two 
vertical planes of symmetry therefore the models has 15 d.o.f. . The railway is considered elastic solid in both 
planes horizontal and vertical that induces forced vibrations of the wagon. The vibrations are studied using the 
Language’s equations and the Hamilton’s principle. By this way it was found for the first time a mathematical 
approach for the wagon box forced vibrations in connection with the non-linear vibrations of the rail. In the 
mean time the authors found, by using the Hamilton’s principle and the Dirac function, two partial derivatives 
equations which describe the forced non-linear vibrations at the rail in two planes namely: vertical and 
horizontal. 
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1 Introduction 
 With the continuos increase at the speed for 
the railway transport it is necessary to increase the 
comfort and the safty of the railway traffic. 
Because of these demands it was developed the 
research in the area of forced vibrations of the 
wagon train. These vibrations are due to the 
geometrical imperfections of the rails and produce, 
in the case of constant speed of the wagon, the 
following vibrating movements: vertical, rolling, 
pitching and gyration. 
 Also the rail is a deformable solid in both 
vertical and horizontal plane, having a distributed 
elasticity and damping in these planes [5]. In the 
mean time it was taking into account, for the 
vibrations of the rail, the effects of rotary inertia 
and shear stress. 
 The wagon is with one suspended stage, its 
box being elastic mounted into the bogies. Also the 
suspension and the anti-gyrations elastic elements 
have viscous dampers. The paper reveals the forced 

damped vibrations of the system wagon-rail in 
interaction. 
 
 

2  Basic Model and Hypothesis 
 The wagon model (see figure 1) is composed 
of two rigid bogies 1 and 2, having the mass 
m1=m2, the wagon box 3 of mass m3 and the wheels 
“left”, “right” identical 4,5,6 and 7. 
 The bogies and the box at the wagon have 
two planes of symmetrie and the rails are simetric 
in geometrical rotations, being deformable in both 
horizontal and vertical planes. The rails have 
distributed damping cy and cz in the vertical and 
horizontal planes, the model of the rails being 
illustrated in figure 2. The model consists into 
clamped beams at the ends. The links between the 
bogies and the wagon box, together with the links 
between the wheels axes and the bogies are 
identical in vertical and horizontal planes, their 
mechanical characteristics being: 
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- stifness: k, k’ for the system bogies-wagon and k1, 
k’1 for the system wheel axes-bogie; 

- viscous damping coefficients: c, c’ for the system 
bogies-wagon and c1, c’1 for the system wheel 
axes-bogie; 

- mass moments of inertia: J1=J2 (axes c1z, c2z), 
J’1=J’2 (axes c1x, c2x), J″1=J″2 (axes c1y, c2y) for 
the bogies; J3 (axe c3z), J’3 (axe c3x), J″3 (axe c3y) 
for the wagon box, where c1, c2 and c3 are the 
mass centers. 

 The model has 15 degree of freedom (d.o.f.) 
as it follows: 
- the coordinates y1, y2, y3 are the vertical 

displacements of the mass centers; 
- ϕ1,ϕ2,ϕ3 are the rotation due to the pitching 

movement; 
- θ1,θ2,θ3 are the rotation due to the rolling 

movement; 
- z1,z2,z3 are the coordinates of the mass center for 

the gyration movement; 
- ψ1,ψ2,ψ3 are the rotation due to the gyration 

movement; 
The rail has: the mass moments of inertia 

J’
zo, J’

yo ;Ix is the geometric moment of inertia; E is 
the Young’s modulus and the distance between two 
clamped ends is L0=19.2m. 
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Figure 1 
 

 
The geometrical imperfection of the rail into 

vertical plane ys are due to the static and dynamic 
loads [1], [2], [3] as well as the imperfections into 
the horizontal plane zs. It was considered that the 
wheels are in permanent contact with the rail. 

The adapted model is a mechanical system 
with holonomic and scleronomic links, on which is 
acting elastic forces, viscous damping forces and 

perturbating forces generated by the imperfections 
and the deformations of the rail .It is considered 
that all the wheels are in permanent contact with 
the rails only inside the length  L0. 
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Figure 2.  
 
 

3  The Equations of Vibrating 
Movement of The Wagon 

Using the Lagrange’s equations, the compact 
matrix equation for the small vibrations is  

                       
[ ]{ } [ ]{ } [ ]{ } { }FqKqDqM =++ &&& ,                        (1) 
 
by denoting: 
- the vector of generalized coordinates 
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and similar [ ]'J , [ ]''J ,                                          

 
- the damping matrix 
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- the stifness matrix 
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where [ ]yK , [ ]zK , [ ]θK , [ ]ψK , [ ]ϕK , [ ]ϕyK , 

[ ]ψzK  are similar with [ ]yD , [ ]zD , [ ]θD , [ ]ψK , 

[ ]ϕD , [ ]ϕyD , [ ]ψzD  if is replace c by k, c’ by k’, c1 
by k1 and c1’ by k1’; 
- the column matrix at the perturbating forces {F} 

is 
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 In the relations (9) ÷ (13) R,L

siy , with 

7,4i = , are the deformations of the rails “Left” 
and “Right”, in the vertical plane, for the contact 
points with the wheels. Also, zsi have the same 
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meaning in the horizontal vibrations of the wagon. 
The R,L

siy  and zsi deformations are functions of x 
and t and represent the excitations of the wagon 
which has a constant speed. To solve the system (1) 
it is necessary to compute the functions ( )t,xy R,L

si  
and ( )t,xzsi . These functions represent the static 
and dynamic deformations of the rail in both 
vertical and horizontal planes. 
 
 

4  The Forced Vibrations 
Equations of The Rails 

 To study the forced vibrations of the rails it 
was considered that the wagon, throughout a rigid 
contact, is acting into the rails with dynamic and 
static forces. These forces represent a system 
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contact with the wheels 4,5,6,7 “Left” and “Right” 
(see fig.2). The rail is considered to be a beam, 
having: the length L0 , clamped at both ends, the 
mass per unit length m and being loaded by the 
above-mentioned forces.  
 Therefore, in vertical plane, taking into 
account the rotary inertia and the shear stress, by 
using the Hamilton’s principle it was derived the 
partial derivatives equation of the forced vibrations 
of rails “Left”, “Right”: 
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where δ,L/JJ ozoz =′  is the Dirac’s function, 
( ) GA8.24.1k ⋅⋅÷=  [6], A is the cross-section 

area of the beam, G is the transversal modulus and 
Gt is the entire mass force of the wagon. It was 
considered that in both vertical and horizontal 
planes the external forces are into a plane witch 
contains the axe of the beam and each wheel 
equally supports the mass force of the wagon. Also, 
from the Hamilton’s principle, the boundary 
conditions are 
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 In the same manner it was derived the 
partial derivatives equations of the forced 
vibrations of the rail into the horizontal plane, 
obtaining: 
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(16) 
where oyoy L/JJ =′ , and ( ) GA6.11.1k ⋅⋅÷=  
[6]. The boundary conditions are: 
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 In equations (14) and (16) xi represent the 
coordinates of the contact points between the 
wheels and the rail, their expressions being: 
 

1342231121 Ixx;Ixx;Ixx;vtx −=−=−==
                           (18) 
 
 The key of solving the system (1) is 
therefore the computation of the solutions of 
equations (14) and (16). 
 
 

5 Conclusions 
 By taking into account that the rails are 
deformable bodies represents the main contribution 
of the paper. The equations (14) and (16) enable us 
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the computation of the deformations of the rail 
which represent the excitations for the wagon. 
 Another contribution of the paper is that 
vibrations of the wagon are considered in a 
complex form of a mechanical system having 15 
d.o.f. . By this way it is possible to check in the 
early stage of design the comfort and the saftey 
conditions for the railway traffic. 
 The system (1) could be solved by numerical 
methods such as Runge-Kutta’s method, while the 
equations (14) and (16) could be solved by a mixed 
Kautorovich’s method coupled with a perturbation 
method. 
 Therefore, the paper reveals a complex and 
usefull algorithm for the CAD stages. 
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