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Abstract: The paper reveals recent developments of the influence of the geometric imperfections on the 
amplitude and the phase angle of the non-linear vibrations of thin rectangular plates parametrically 
excited. In the region of principal parametric resonance, starting from the temporal non-linear differential 
equation that describes the oscillatory movement and using the second order approximation of the 
asymptotic method were computed the amplitude and the phase angle as functions of system parameters 
and geometric imperfections. By  varying the intensity of the geometric imperfections was obtained their 
influence upon the amplitude and the phase angle for the stationary non-linear dynamic response. 
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1  Nomenclature 
A1, A2, B1, B2 = unknown functions in asymptotic 
expansion; C = viscous damping coefficient; D = 
flexural rigidity of plate; E = Young’s modulus; M = 
coefficient of the non-linear term; Ny(t) = external in-
plane loading per unit width; Nyo = static in-plane 
loading per unit width; Nyt = amplitude of harmonic 
in-plane loading per unit width; Ncr = critical 
buckling load of the plate, defined as in [14]  pp. 
353; a = length of plate in x-direction; b = length of 
plate in y-direction; f(x,y,t) = Airy’s stress function; 
h = plate thickness;  
s=Λ/2Ω=frequency parameter; 
t=time; w(x,y,t)=lateral midsurface displacement in 
z-direction; w0(x,y) = initial geometric imperfection 
in z-direction; ∆ = decrement of damping; Λ(t) = 
instantaneous frequency of the external in-plane 
excitation, Λ = dθ/dt; Ωq = free vibration circular 
frequency of a rectangular plate loaded by a  constant 
component of in-plane force; qΩ =free vibration 

circular frequency of a rectangular plate , with initial   
geometric imperfections , loaded by a constant 
component of in-plane force;  
ε = small positive parameter in asymptotic 
expansion, 0<ε<<1; θ(t) = total phase angle of 
harmonic excitation; µ = load parameter of the plate; 
ν = Poisson’s ratio; ρ = mass density per unit volume 
of plate; τ = slowing time in asymptotic analysis; 
ψp(t) = phase angle of the parametric vibration; ωq = 
free vibration frequency of unloaded rectangular 
plate; ∆∆ = double iterated Laplace operator in R2; 

)(
•

= differentiation with respect to time; ( ),ξ = 
partial differentiation with respect to ξ. 
  
 
 
 

2 Introduction 
 Extensive efforts and considerable amount of 
research has been concentrated on the prediction of 
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the non-linear dynamic behaviour of rectangular 
plates with small deviation from flatness called initial 
geometric imperfection. Excellent reviews on the 
subject can be found in articles written by Hui [2-8]. 
Studies of the effect of geometric imperfection on the 
small-amplitude vibration frequencies of simply 
supported rectangular plates have been done by Hui 
and Leissa [2], Ilanko and Dickinson [9] and Bugaru 
[1].    
 They found out that geometric imperfections 
of the order of the plate thickness may raised the 
vibration frequencies and may even cause the 
structures to exhibit soft-spring behaviour [7]. The 
survey of the literature reveals that the work on the 
subject has been devoted to the investigation of 
various types of shapes, loadings, and boundary 
conditions [11-13]. 
 The present work covers an existing gap in 
our understanding of the parametric resonance of 
continuous systems and presents a rational analysis 
of the influence of geometric imperfections upon the 
amplitude and the phase angle for the stationary non-
linear dynamic response. 
 
 
3 Conceptual Model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The model under investigation is an imperfect 
rectangular plate simply supported along its edges 
and acted by periodic in-plane forces uniformly 
distributed along two opposite edges as shown in 
figure 1. 
It is assumed that the plate is of uniform thickness, 
“stress free”, elastic, homogeneous and isotropic and 
also the plate thickness and the resulting 
displacements are small compared with the 
wavelength of lateral vibration in order to be able to 

use thin plate theory. Consequently, since thin plate 
theory is used in the analysis, the loading frequencies 
over which lateral vibrations occur are considerably 
below the natural frequencies of longitudinal 
vibrations and in-plane inertia forces can be 
neglected. 
 
 
4  Basic Equations  
 The plate theory used in this analysis may be 
considered as the dynamic analogue of the Von 
Karman large-deflection theory and is derived in 
terms of Airy’s stress function, the lateral 
displacement and the initial geometric imperfection. 
The differential equations governing the non-linear 
flexural vibrations of the plate are: 
 
∆∆f=E[((w+w0),xy)2-(w0,xy)2-(w+w0),xx(w+w0),yy+                  
 +w0,xx

.wo,yy]                         (1)                    
∆∆w = h/D[f,yy

. (w+w0),xx - 2. f,xy (w+w0),xy +  
                    +f,xx (w+w0),yy - ρ. w,tt] 
where D = Eh3/12(1-ν2). 
 
The boundary stress conditions (in-plane movable 
edges) are expressed as: 
 

f,YY = 0 and f,XY = 0 along x = 0,a             (2) 
f,XX = -NY(t)  and   f,XY = 0   along  y = 0,b 

 
The boundary supporting conditions are expressed 
as: 

w = w,xx + ν.w,yy = 0     along x = 0,a         (3) 
w = w,yy + ν.w,XX = 0     along y = 0,b 

 
The problem consists in determining the functions f 
and w, for a given function w0, which satisfy the 
governing equations (1) together with the boundary 
conditions (2) and (3). 
 
5  Method Of Solution  
 Applying the Kantorovich’s method to the 
governing equations (3) as in [1], introducing linear 
damping and taking one term in the expansion for the 
lateral displacement, the system is reduced to the 
following differential equation of motion: 
   ••             •                                                             
 w + 2.C.w + Ω2 [1 - 2.µ.(Ω/Ω)2 cos[θ(t)]].w - 
2.µ.cos[θ(t)]Ω2

 (w0+d) + Mw3 + 3M w2.(w0+d) = 0,
                                                                   (4) 
where d is the amplitude of the static deformation of 
the plate and 

µq = Nyt / [2(Ncr – Nyo)].  (5) 

N y( t )  =  N y o+N y t  

Fig. 1 

Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp170-174)



This is a second-order non-linear differential 
equation with periodic coefficients, which may be 
considered as an extension of the standard  
Mathieu-Hill’s  equation. 
 
 
6  Solution of the Temporal 
Equation of Motion 
 Mathematical techniques for solving such 
problems are limited and approximate methods are 
generally used. The method of asymptotic expansion 
in powers of a small parameter ε, developed by 
Mitropolskii [10], is a most effective tool for 
studying non-linear vibrating systems with slowly 
varying parameters. Assuming that the viscous 
damping and the nonlinearity are small and the 
instantaneous frequency of excitation and the load 
parameter vary slow with the time the equation (5) 
can be written, by denoting W=w and Θ=θ, in the 
following asymptotic form: 
 ••                                                                                        • 
W+Ω2.W = ε[2µ.cos[Θ(T)]. Ω2

 (W +W0+d) - 2.C.W -
MW3-3MW2(W0+d)                                                (6) 
 
where τ = εt is the “slowing” time. For the second 
order of approximation in ε, we seek a solution for 
the equation (6) in the following form: 
 
W=Wp(τ) cos[((1/2)Θ+ψp)]+ε u(τ,Wp, Θ,(1/2)Θ+ψp), 
                                                                    (7) 
 
where Wp, ψp are functions of time defined by the 
system of differential equations: 
 
dWp/dt = ε A1(τ , Wp , ψp) + ε2 A2(τ , Wp , ψp) 
dψp/dt = Ω - (1/2)Λ + ε B1(τ , Wp , ψp) +  
+ε2 B2 (τ , Wp , ψp)                                           (8)                          
 
and   dΘ(t)/dt = Λ(t). Functions u, A1, A2, B1, B2 are 
selected in such a way that the W , given by (7), will 
represent a solution of the equation (6) , after 
replacing Wp  and ψp by the functions defined in the 
system (8). 
 
 Following the general scheme of 
constructing asymptotic solutions and performing 
numerous transformations and manipulations, we can 
finally arrive at a system of equations describing the 
nonstationary response of the discretized system. By 
integrating this system of equations, amplitude Wp 
and phase angle ψp can be obtained as functions of 
time. The solution W of the equation (6) is 
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The solution (9) was computed for the region of 
principal parametric resonance. The parametric 
resonance occurs when the excitation frequency is 
approximately equal to twice the natural frequency 
and can be written as: 
   Λ ≅ 2 Ω                   (10)                   
Analysing relation (9), the paper reveals, for the first 
time, new terms not yet mentioned by the researchers 
in the field.   

 
 

7  Stationary Response  
 The stationary response given by the 
amplitude Wp and the phase angle ψp, associated with 
the assumed spatial forms of vibration of our system, 
may be computed as a special case of the 
nonstationary motion in the resonant regime 
described by the systems of equations (8) and (9). As 
mentioned by Ostiguy and Nguyen [12, 13] the 
solution for simply-supported plates indicates the 
presence of principal parametric resonances, the 
possibility of internal resonances and the occurrence 
of simultaneous resonances but precludes the 
possibility of combination resonances. As can be 
seen in relation (9), the authors founded for the first 
time, with analytical tools, the influence of the 
geometric imperfections in the regions of forced, 
sub-harmonic and supra-harmonic parametric 
resonances. In this way was found theoretical the 
presence of internal resonances and the occurrence of 
simultaneous resonances already mentioned 
experimentally by Ostiguy and Nguyen. 
Stationary principal parametric response, associated 
with various spatial forms of vibration, are given by 
the system (8) setting ε = 1, dWp/dt = 0, dψp/dt = 0 
and eliminating ψp from this system of equations. 
Thus the stationary amplitude Wp  can be obtained as 
function of external excitation frequency and 
represents the solution of the following equation 
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As mentioned by Ostiguy and Evan-Iwanowski [11] 
the base width of the stationary parametric response 
is the only region in which vibrations may normally 
initiate. The phase angle of the stationary parametric 
response can be obtained from the same system (8) 
setting dWp/dt = 0, dψp/dt = 0 and eliminating the 
amplitude Wp.  By this way was obtained the 
stationary phase angle in the region of principal 
parametric resonance from the following equation: 
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Equations (11) and (12) make it possible to compute 
the stationary response of the plate at the principal 
parametric resonance by taking into account the 
geometrical imperfections of the plate.  
 
 
8  Results and Discussions 
 For the computer programs developed to 
obtain the numerical results the authors used the soft 
packages MATLAB.  
 In order to get more insight into various 
aspects of the problem and to highlight the influence 
of the initial geometric imperfections on the non-
linear dynamic response of rectangular plates, 
numerical evaluation of the solution were performed 
for a wide variety of cases. The results shown in 
figures 2 and 3 are typical of those obtained.  
For ∆=0.12 were founded the amplitude and the 
phase angle of the vibrations for the plate subjected 
to parametric excitation having moderate  
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b. wo / h = 0.6 
Fig. 2 

 
imperfections (wo/h=0.1) and large ones 
(wo/h=0.6).By regarding the above-mentioned figures 
we can conclude that by increasing the imperfections 
appears the phenomena of simultaneous resonances 
mentioned by Nguyen [13]. This phenomena 
manifests itself by multiple salts and the effect of 
“soft spring” in the area of [65,85] Hz. This was 
determined for the first time theoretical while 
Nguyen discovered it experimentally. Also from 
figure 3 we see that in the area of simultaneous 
resonances the phase angle is constant and in the 
mean time all over the area is negative therefore the 
non-linear dynamic response of the plate is in 
advance with regard to the excitation.   
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