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Abstract: - In this paper the influence of the interface forces to the analysis of plates stiffened by arbitrarily 
placed nonintersecting beams of arbitrary cross section subjected to an arbitrary loading is presented. 
According to the proposed model, the stiffening beams are isolated from the plate by sections in the lower 
outer surface of the plate, taking into account the arising tractions in all directions at the fictitious interfaces. 
The aforementioned integrated tractions result in the loading of the beams as well as the additional loading of 
the plate. Their distribution is established by applying continuity conditions in all directions at the interfaces. 
The analysis of both the plate and the beams is accomplished on their deformed shape taking into account 
second-order effects. Six boundary value problems with respect to the plate transverse deflection, to the plate 
inplane displacement components, to the beam transverse deflections, to the beam axial deformation and to 
the beam nonuniform angle of twist are formulated and solved using the Analog Equation Method (AEM), a 
BEM based method employing a boundary integral equation approach. The solution of the aforementioned 
plate and beam problems, which are nonlinearly coupled, is achieved using iterative numerical methods. The 
adopted model describes better the actual response of the plate beams system and permits the evaluation of 
the shear forces at the interfaces in both directions, the knowledge of which is very important in the design of 
prefabricated ribbed plates. The evaluated lateral deflections of the plate - beams system are found to exhibit 
considerable discrepancy from those of other models, which neglect inplane and axial forces and 
deformations. 
 
Key-Words: - Elastic stiffened plate, reinforced plate with beams, bending, nonuniform torsion, warping, 
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1   Introduction 
Structural plate systems stiffened by beams are 
widely used in buildings, bridges, ships, aircrafts 
and machines. Stiffening of the plate is used to 
increase its load carrying capacity and to prevent 
buckling especially in case of in-plane loading. 
The extensive use of the aforementioned plate 
structures necessitates a rigorous analysis. 

The behavior of stiffened plates under static 
loading has been studied for the past few decades. 
The behavior of the aforementioned structural 
systems was initially approximated by smearing – 
out the stiffness properties of the beams to get an 
equivalent orthotropic homogeneous slab of 
constant thickness [1-4]. This approximation may 
be applicable only when the stiffened plate 
satisfies two limitations. The first one is that ratios 
of spacing between two consecutive stiffeners to 
slab boundary dimensions are small enough to 
ensure approximate homogeneity of stiffness. The 
second limitation is that the ratio of stiffener 
rigidity to the slab rigidity must not become so 
large that the beam action is predominant. 

Subsequently, in more refined approximations 
the adopted models for the analysis of the plate - 
beams system isolated the beams from the plate 
and employed numerical methods for the solution 
of the plate and the beams such as a 
semianalytical method [5], a methodology based 
on energy principles [6-7], the differential 
quadrature method [8], the finite strip or the finite 
element method [9-20], the boundary element 
method [21-29] or a combination of these 
methods [30-31]. In all these approximations the 
solution of the bending problem of stiffened plates 
is not general since either the analysis of the plate 
and the beams is performed on the undeformed 
shape ignoring second-order effects or the shear 
longitudinal or transverse forces at the interfaces 
have been neglected or the cross section of the 
stiffening beams is a symmetric one or the 
torsional and warping behavior of the stiffening 
beams has been neglected excluding in this way 
the placement of an eccentric stiffener. All these 
assumptions result in discrepancies from the 
actual response of the stiffened plate. 
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In this paper the influence of the interface 
forces to the analysis of plates stiffened by 
arbitrarily placed nonintersecting beams of 
arbitrary cross section subjected to an arbitrary 
loading is presented. The adopted structural model 
is a refined one of that proposed by Sapountzakis 
and Katsikadelis in [21]. According to this model, 
the stiffening beams are isolated from the plate by 
sections in the lower outer surface of the plate, 
taking into account the arising tractions in all 
directions at the fictitious interfaces. The 
aforementioned integrated tractions result in the 
loading of the beams as well as the additional 
loading of the plate. Their distribution is 
established applying continuity conditions in all 
directions at the interfaces. The analysis of both 
the plate and the beams is accomplished on their 
deformed shape taking into account second-order 
effects. Six boundary value problems with respect 
to the plate transverse deflection, to the plate 
inplane displacement components, to the beam 
transverse deflections, to the beam axial 
deformation and to the beam nonuniform angle of 
twist are formulated and solved using the Analog 
Equation Method (A.E.M.), a BEM based method 
employing a boundary integral equation approach 
[32]. The solution of the aforementioned plate and 
beam problems, which are nonlinearly coupled, is 
achieved using iterative numerical methods.  

The essential features and novel aspects of the 
present formulation compared with previous ones 
are summarized as follows. 

i. The stiffened plate is subjected to an arbitrary 
loading, while both the number and the 
placement of the nonintersecting stiffening 
beams are also arbitrary (eccentric beams are 
also included). 

ii. The influence of the transverse traction 
component at plate-beams interfaces is taken 
into account. Thus, the adopted model 
permits the evaluation of the transverse 
inplane shear forces at the interfaces between 
the plate and the beams, the knowledge of 
which is very important in the design of 
prefabricated plate beams structures 
(estimation of shear connectors in the 
transverse direction). 

iii. Displacement continuity conditions at the 
interfaces are applied along all three axes of 
the coordinate system, leading to the 
formulation of a system of equations 
involving two nonlinear functions, namely 
the longitudinal and transverse inplane shear 
forces at the interfaces. 

iv. The cross section of the stiffening beams is 
an arbitrary one. Thereby, the eccentricities 
of both the centroid and the shear center axes 
with respect to the midline of the plate – 
beam interface are also included. 

v. The nonuniform torsion in which the 
stiffening beams are subjected is taken into 
account by solving the corresponding 
problem and by comprehending the arising 
twisting and warping in the corresponding 
displacement continuity conditions. 

vi. Terms arising from the internal variable axial 
loading of both the plate and the beams 
coming from the longitudinal and transverse 
inplane shear forces at the interfaces are 
taken into account. 

The adopted model describes better the actual 
response of the plate beams system and permits 
the evaluation of the shear forces at the interfaces 
in both directions, the knowledge of which is very 
important in the design of prefabricated ribbed 
plates. The evaluated lateral deflections of the 
plate - beams system are found to exhibit 
considerable discrepancy from those of other 
models, which neglect inplane and axial forces 
and deformations. 
 

 
2   Statement of the problem 

Consider a thin plate of homogeneous, 
isotropic and linearly elastic material with 
modulus of elasticity E  and Poisson ratio ν , 
having constant thickness hp  and occupying the 
two dimensional multiply connected region Ω  of 
the x y,  plane bounded by the piecewise smooth 
K+1 curves 0 1 K 1 K, ,..., ,Γ Γ Γ Γ− , as shown in 
Fig.1. The plate is stiffened by a set of 
i 1,2,...,I=  arbitrarily placed nonintersecting 
beams of homogeneous, isotropic and linearly 
elastic material with modulus of elasticity i

bE  and 

Poisson ratio i
bν , which may have either internal 

or boundary point supports. For the shake of 
convenience the x  axis is taken parallel to the 
beams. The stiffened plate is subjected to the 
lateral load ( )g g x, y= . For the analysis of the 
aforementioned problem a global coordinate 
system Oxy  for the analysis of the plate and local 

coordinate ones i i iO x y  and %%ii iO x y  
corresponding to the centroid and shear center  
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Fig.1. Two dimensional region Ω occupied by the plate. 

 
axes of each beam are employed as shown in 
Fig.1. 

The solution of the problem at hand is 
approached by a refined model of that proposed 
by Sapountzakis and Katsikadelis in [21]. 
According to this model, the stiffening beams are 
isolated from the plate by sections in the lower 
outer surface of the plate, taking into account the 
arising tractions at the fictitious interfaces (Fig.2). 
Integration of these tractions along the width of 
the i-th beam results in line forces per unit length, 
which are denoted by i

xq , i
yq  and i

zq  
encountering in this way the influence of the 

transverse component yq , which in the 
aforementioned model [21] was ignored. The 
aforementioned integrated tractions result in the 
loading of the i-th beam as well as the additional 
loading of the plate. Their distribution is unknown 
and can be established by imposing displacement 
continuity conditions at the interfaces along ix , 

iy  and iz  local axes following the procedure 
developed in this investigation. 

The arising additional loading at the middle 
surface of the plate and the loading along the 
centroid and the shear center axes of each beam 
can be summarized as follows 
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Fig.2 Thin elastic plate stiffened by beams (a) and isolation of the beams from the plate (b). 
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a. In the plate (at the trace of the midline of each 
(i-th) plate – beam interface) 

(i) A lateral line load i
zq  at the interface. 

(ii) A lateral line load i
pym / x∂ ∂  due to the 

eccentricity of the component i
xq  from 

the middle surface of the plate. 
i i
py x pm q h / 2=  is the bending moment. 

(iii) A lateral line load i
pxm / y∂ ∂  due to the 

eccentricity of the component i
yq  from 

the middle surface of the plate. 
i i
px y pm q h / 2=  is the bending moment. 

(iv) An inplane line body force i
xq  at the 

middle surface of the plate. 
(v) An inplane line body force i

yq  at the 
middle surface of the plate. 
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Fig.3. Structural model and directions of the additional loading of the plate and the beams. 
 
b. In each beam  

(i) A perpendicularly distributed line load i
zq  

along the beam centroid axis. 
(ii) A transversely distributed line load i

yq  
along the beam centroid axis. 

(iii) An axially distributed line load i
xq  along 

the beam centroid axis. 
(iv)  A distributed bending moment i

bym  along 

iy  local beam centroid axis due to the 

eccentricity of the component i
xq  from the 

beam centroid axis. i i i
by x Czm q e=  is the 

bending moment. 
(v) A distributed bending moment i

bzm  along 

iz  local beam centroid axis due to the 

eccentricity of the component i
xq  from 

the beam centroid axis. i i i
bz x Cym q e= −  is 

the bending moment. 
(vi)  A distributed twisting moment %

i
bxm  

along %ix  local beam shear center axis due 

to the eccentricity of the components i
yq , 

i
zq  from the beam shear center axis. 

% %
i i i i i

y zbx S z S ym q e q e= − +%  is the twisting 

moment. 
The structural models and the aforementioned 
additional loading of the plate and the beams are 
shown in Fig.3. 

On the base of the above considerations the 
response of the plate and of the beams may be 
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described by the following boundary value 
problems. 
a.  For the plate.  

The plate undergoes transverse deflection and 
inplane deformation. Thus, for the transverse 
deflection the equation of equilibrium employing 
the linearized second order theory can be written as  
 

( )

2 2 2
p p p4

p x xy y2 2

iI py p pi i i
z x y i

i 1

w w w
D w N 2N N

x yx y

m w w
g q q q y y

x x y

∂ ∂ ∂
∂ ∂∂ ∂

∂ ∂ ∂
δ

∂ ∂ ∂=

⎛ ⎞
⎜ ⎟∇ − + + =
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− + − − −
⎜ ⎟
⎝ ⎠

∑

in Ω                                                                (1) 
 
and the corresponding boundary conditions as 
 

p1 p p2 pn p3w Rα α α+ =                                  (2a) 

p
p1 p2 pn p3

w
M

n
∂

β β β
∂

+ =  Γ  

                                                                          (2b) 
 

where ( )p pw w x, y=  is the transverse deflection 

of the plate; 3 2
pD Eh / 12(1 v )= −  is its flexural 

rigidity; ( )x xN N x, y= , ( )y yN N x, y= , 

( )xy xyN N x, y=  are the membrane forces per unit 

length of the plate cross section; i( y y )δ −  is the 
Dirac’s delta function in the y direction; pnM  and 

pnR  are the bending moment normal to the 
boundary and the effective reaction along it, 
respectively, which using intrinsic coordinates n, s 
[33] are given as 
 

( )
2

p p2
pn p 2

w w
M D w v 1

ns
κ

⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟= − ∇ + − +

⎜ ⎟∂⎢ ⎥∂⎝ ⎠⎣ ⎦
 

                                                                           (3) 
2

p p2
pn p

p p
n nt

w w
R D w ( v 1)

n s s n s

w w
N N

n s

∂ ∂∂ ∂ κ
∂ ∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − ∇ − − −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∂ ∂

+ +
∂ ∂

                                                                (4) 
 

in which ( )sκ κ=  is the curvature of the 
boundary; / s∂ ∂  and / n∂ ∂  denote 
differentiation with respect to the arc length s of 
the boundary and the outward normal n to it, 
respectively. Finally, pia , piβ  ( i 1,2,3 )=  are 
functions specified on the boundary Γ . 

The boundary conditions (2a,b) are the most 
general boundary conditions for the plate problem 
including also the elastic support. It is apparent 
that all types of the conventional boundary 
conditions (clamped, simply supported, free or 
guided edge) can be derived form these equations 
by specifying appropriately the functions pia  and 

piβ  (e.g. for a clamped edge it is p1 p1a 1β= = , 

p2 p3 p2 p3a a 0β β= = = = ). 
Since linearized plate bending theory is 

considered, the components of the membrane 
forces xN , yN , xyN  are given as 
 

p p
x

u v
N C

x y
∂ ∂

ν
∂ ∂

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                    (5a) 

p p
y

u v
N C

x y
∂ ∂

ν
∂ ∂

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                (5b) 

p p
xy

u v1N C
2 y x

∂ ∂ν
∂ ∂

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠
                         (5c) 

 

where ( )2
pC Eh / 1 ν= − ; ( )p pu u x, y= , 

( )p pv v x, y=  are the displacement components 
of the middle surface of the plate arising from the 
line body forces i

xq , i
yq  (i=1,2,…I). These 

displacement components are established by 
solving independently the plane stress problem, 
which is described by the following boundary 
value problem (Navier’s equations of equilibrium) 
 

( )

Ip p2 i
p x

i 1p

i

u v1 v 1u q
1 v x x y Gh

y y 0

∂ ∂∂ δ
∂ ∂ ∂ =

⎡ ⎤+
∇ + + −⎢ ⎥− ⎣ ⎦

− =

∑
 

                                                                          (6a) 

( )

Ip p2 i
p y

i 1p

i

u v1 v 1v q
1 v y x y Gh

y y 0

∂ ∂∂ δ
∂ ∂ ∂ =

⎡ ⎤+
∇ + + −⎢ ⎥− ⎣ ⎦

− =

∑
  

in Ω                                                                  (6b) 
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p1 pn p2 n p3u Nγ γ γ+ =                                    (7a) 

p1 pt p2 t p3u Nδ δ δ+ =  on Γ  (7b) 
 
in which G E / 2(1 )ν= +  is the shear modulus of 
the plate; nN , tN  and pnu , ptu  are the boundary 
membrane forces and displacements in the normal 
and tangential directions to the boundary, 
respectively; piγ , piδ  ( i 1,2,3 )=  are functions 
specified on the boundary Γ . 
b. For each beam. 

Each beam undergoes transverse deflection with 
respect to iz  and iy  axes, axial deformation along 

ix  axis and nonuniform angle of twist along %ix  
axis. Thus, for the transverse deflection with respect 
to iz  axis the equation of equilibrium employing 
the linearized second order theory can be written as 

 
i4 i 2 i i
byi i i i ib b b

b y b z x4 2
i ii i

mw w wE I N q q
x xx x

∂∂ ∂ ∂
− = − +

∂ ∂∂ ∂
   

in iL , i 1,2,...,I=                                              (8) 
 

z i z i z
1i b 2i z 3ia w a R a+ =  (9a) 
z i z i z
1i y 2i y 3iMβ θ β β+ =      at the beam ends 

i ix 0, L=                                                          (9b) 
 
where ( )i i

b b iw w x=  is the transverse deflection of 

the i-th beam with respect to iz  axis; i
yI  is its 

moment of inertia with respect to iy  axis; 

( )i i
b b iN N x=  is the axial force at the ix  centroid 

axis; z
jia , z

jiβ  ( j 1,2,3 )=  are coefficients 

specified at the boundary of the i-th beam; i
yθ , i

zR , 
i
yM  are the slope, the reaction and the bending 

moment at the i-th beam ends, respectively given as 
 

i
i b
y

i

w
x

∂θ
∂

= −                                                      (10) 

3 i i
i i i ib b
z b y b3

ii

w wR E I N
xx

∂ ∂
∂∂

= − +                       (11) 

2 i
i i i b
y b y 2

i

wM E I
x

∂
∂

= −                                        (12) 

 
It is apparent that all types of the conventional 

boundary conditions (clamped, simply supported, 
free or guided edge) can be derived from eqns 
(9a,b) by specifying appropriately the coefficients 

z
jia , z

jiβ  (e.g. for a simply supported end it is 
z z
1i 2ia 1β= = , z z z z

2i 3i 1i 3ia a 0β β= = = = ). 

Similarly, the ( )i i
b b iv v x=  transverse deflection 

with respect to iy  axis must satisfy the following 
boundary value problem 
 

4 i 2 i
i i ib b
b z b4 2

i i
i i

i i b bz
y x

i i

v vE I N
x x

v mq q
x x

∂ ∂
− =

∂ ∂

∂ ∂
− −

∂ ∂

   in 

                                                                          (13) 
 

y y yi i
b y1i 2i 3ia v a R a+ =                                          

(14a) 
y y yi i

z z1i 2i 3iMβ θ β β+ =     at the beam ends 

i ix 0, L=                                                        (14b) 
 
where i

zI  is the moment of inertia of the i-th beam 

with respect to iy  axis; y
jia , y

jiβ  ( j 1,2,3 )=  

are coefficients specified at its boundary; i
zθ , i

yR , 
i
zM  are the slope, the reaction and the bending 

moment at the i-th beam ends, respectively given 
as 

 
i

i b
z

i

v
x

∂θ
∂

=                                                          (15) 

3 i i
i i i ib b
y b z b3

ii

v vR E I N
xx

∂ ∂
∂∂

= − −                         (16) 

2 i
i i i b
z b z 2

i

vM E I
x

∂
∂

=                                            (17) 

 
Since linearized beam bending theory is 

considered the axial deformation i
bu  of the beam 

arising from the arbitrarily distributed axial force 
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i
xq  (i=1,2,…I) is described by solving 

independently the boundary value problem 
 

2 i
i i ib
b b x2

i

uE A q
x

∂
∂

= −            in iL , i 1,2,...,I=  (18) 

x i x i x
1i b 2i b 3ia u a N a+ =                at the beam ends  

         ix 0, L=                                                  (19) 
 
where i

bN  is the axial reaction at the i-th beam ends 
given as 
 

i
i i i b
b b b

i

uN E A
x

∂
∂

=                                               (20) 

 
Finally, the nonuniform angle of twist with 

respect to %ix  shear center axis has to satisfy the 
following boundary value problem [34] 

 

%

% %
%

% %

4 i 2 i
i i i i ix x
b w b x b x4 2

i i
E I G I m

x x

∂ θ ∂ θ

∂ ∂
− =   in 

iL , i 1,2,...,I=                                                (21) 
 
%

%
%

%
%x i x i x

1i 2i 3ix xa a M aθ + =  (22a) 

% %
%

% %
i

x x i xx
1i 2i w 3i

i
M

x
∂θ

β β β
∂

+ =          at the beam ends                           

i ix 0, L=                                                        (22b) 
 
where % %%( )i i

ix x xθ θ=  is the variable angle of twist of 

the i-th beam along the %ix  shear center axis; 
i i i
b b bG E / 2(1 )ν= +  is its shear modulus; i

wI , %
i
xI  

are the warping and torsion constants of the i-th 
beam cross section, respectively given as  
 

i
2i P i

w SAI dAϕ= ∫                                             (23a) 

% % %
%i

P P
2 2i iS Si ii ix A

i i
I y z y z dA

z y
ϕ ϕ⎛ ⎞∂ ∂

= + + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫ % %

% (23b) 

 
with %P

iS i( y ,z )ϕ %  the primary warping function with 

respect to the shear center S of the iA  beam cross 

section; 
%x
jia , 

%x
jiβ  ( j 1,2,3 )=  are coefficients 

specified at the boundary of the i-th beam; 
%
%

i
x

ix
∂θ
∂

 

denotes the rate of change of the angle of twist 
and it can be regarded as the torsional curvature; 

%
i
xM  is the twisting moment and i

wM  is the 
warping moment due to the torsional curvature at 
the boundary of the i-th beam given as 
 

% % %
i iP iS
x x xM M M= +                                   (24a) 

%

%

2 i
i i i x
w b w 2

i
M E I

x

∂ θ

∂
= −                           (24b) 

 
In eqn (24a) %

iP
xM  is the primary twisting moment 

resulting from primary shear stress distribution 
and %

iS
xM  is the secondary twisting moment 

resulting from secondary shear stress distribution 
due to warping given as [34] 
 

% %
%
%

i
iP i i x

bx x
i

M G I
x

∂θ
∂

=                                    (25a) 

%
%

%

3 i
iS i i x

b wx 3
i

M E I
x

∂ θ

∂
= −                                 (25b) 

 
The boundary conditions (22a,b) are the most 
general linear torsional boundary conditions for 
the beam problem including also the elastic 
support. It is apparent that all types of the 
conventional torsional boundary conditions 
(clamped, simply supported, free or guided edge) 
can be derived form these equations by specifying 

appropriately the coefficients 
%x
jia , 

%x
jiβ  

( j 1,2,3 )=  (e.g. for a clamped edge it is 
% %x x
1i 1ia 1β= = , 

% % % %x x x x
2i 3i 2i 3ia a 0β β= = = = ). 

Eqns. (1), (6a), (6b), (8), (13), (18), (21) 
constitute a set of seven coupled partial 
differential equations including ten unknowns, 
namely pw , pu , pv , i

bw , i
bv , i

bu , %
i
xθ , i

xq , i
yq , 

i
zq . Three additional equations are required, 

which result from the displacement continuity 
conditions in the direction of ix , iy  and iz  local 
axes at the midline of each (i-th) plate – beam 
interface. These conditions can be expressed as 
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%%
i i i

p b S y xw w e θ− =     in the direction of iz  local 

axis                                                                    (26) 

( ) %
 i

i
p pi i P ib

p b Cz S xfi

h w wu u e
2 x x
∂ ∂ φ θ
∂ ∂

− = − +   in  

the direction of ix  local axis                            (27) 

%
p pi i i

p b S z x
h w

v v e
2 y
∂

θ
∂

− = − − %     in the direction 

of iy  local axis                                                 (28) 
 

where ( )
 i

P
S f
φ  is the value of the primary warping 

function with respect to the shear center S of the 
beam cross section at the midline of the if  (i-th) 
interface. 

In all the aforementioned equations the values 
of all the eccentricities i

Cze , i
Cye , i

S ze %, %
i
S ye  and of 

the primary warping function %P
iS i( y ,z )ϕ %  should be 

set having the appropriate algebraic sign 
corresponding to the local beam axes. 

It is worth here noting that the coupling of the 
aforementioned equations is nonlinear due to the 
terms including the unknown i

xq  and i
yq  interface 

forces.  
 
 

3   Numerical Solution 
The numerical solution of the boundary value 
problems described by eqns (1-2a,b), (6a,b-7a,b), 
(8-9a,b), (13-14a,b), (18-19) and (21-22a,b) is 
accomplished employing the Analog Equation 
Method [32].  
 
 
4   Numerical examples 

On the basis of the analytical procedures 
presented in the previous sections, a computer 
program has been written in order to demonstrate 
the influence of the interface forces to the analysis 
of beam stiffened plates. In all the examples treated 

i
bE E 3.00E7= = , i

b 0.20ν ν= = , while the 
numerical results have been obtained using 180  
constant boundary elements and 162  constant 
domain rectangular cells. 
 
Example 1 

A rectangular plate with dimensions 
a b 18.0 9.0 m× = ×  subjected to a uniform load 

2g 10kN / m=  and stiffened by a 1.0 1.0m×  

rectangular beam ( %
1
xI =1.40574E-01m4, 

1
wI =1.34405E-04m6, 1

S ze %=-0.5m) eccentrically 
placed with respect to the center line of the plate 
(Fig.4) has been studied. The plate is clamped 
along its small edges, while the other two edges 
are free according to both its transverse and 
inplane boundary conditions, while the beam is 
also clamped at its edges according to its 
transverse, axial and torsional boundary 
conditions. In Fig.5 the contour lines of the 
deflections of the stiffened plate are presented as 
compared with those obtained from a BEM [27] 
solution in which the inplane forces and 
deformations are ignored ( i i

x yq q 0= = , i
zq 0≠ ). 

Moreover, in Fig.6 the corresponding deflections 
obtained from FEM solutions [35] using either 8-
noded quadrilateral shell finite elements 
(parabolic elements) or 10-noded tetrahedron 
solid finite elements (parabolic elements) are 
presented for comparison reasons. The 
discrepancy in the results arising from the 
ignorance of the inplane interface forces is 
obvious. In the last three (BEM and FEM) 
solutions the analysis is linear since the 
equilibrium equations are referred to the 
undeformed state of the stiffened plate contrary to 
the proposed method in which the equilibrium 
equations are written in the deformed state. The 
discrepancy of the results of the solutions ignoring 
plate membrane and beam axial behavior 
demonstrates the influence and necessitates the 
inclusion of the interface forces in the analysis of 
a stiffened plate. 
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Fig.4. Plan view (a) and section a-a (b) of the stiffened plate of Example 1. 
 
 
 

 
 
 
Example 2 
A rectangular plate with dimensions 
a b× = ×18 0 9 0. .  m  subjected to an eccentric 
uniformly distributed load 2g 25kN / m=  and 
stiffened by three identical I-section beams 
( %

1
xI =6.51930E-03m4, 1

wI =9.42741E-04m6,  
 
 
 
 
 

i
S ze %=-2.10048E-01m) has been studied (Fig.7). 

The plate is transversely simply supported and 
inplane clamped along its small edges, while the 
other two edges are free according to both its 
transverse and inplane boundary conditions, while 
the beams are also transversely simply supported 
and axially and torsionally clamped at their edges. 
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Fig.5. Contour lines of the deflectionwp (m) for g 10kPa=  (a) taking into account and (b) ignoring the 
inplane interface forces of the stiffened plate of example 1. 
 

In Fig.8 the contour lines of the deflections of 
the stiffened plate are presented as compared with 
those obtained from a BEM [27] solution in which 
the inplane forces and deformations are ignored  
( i i

x yq q 0= = , i
zq 0≠ ). The discrepancy of the 

results of the solution ignoring plate membrane 
and beam axial behavior demonstrates their 
influence and necessitates once again their 
inclusion in the analysis of a stiffened plate. 
 
 
 
 
 

5   Concluding remarks 
The influence of the interface forces to the 

analysis of plates stiffened by arbitrarily placed 
nonintersecting beams of arbitrary cross section 
subjected to an arbitrary loading is presented. A 
realistic model has been adopted, which contrary 
to other approaches, takes into account the arising 
tractions in all directions at the fictitious 
interfaces. The main conclusions that can be 
drawn from this investigation are  
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(a)

 
(b)

 
Fig. 6. Deflections wp (m) for g 10kPa=  using (a) 720 8-noded (Parabolic) quadrilateral shell finite 
elements and (b) 4243 10-noded (Parabolic) tetrahedron solid finite elements of the stiffened plate of 
example 1. 
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Fig.7. Plan view (a) and section a-a (b) of the stiffened plate of Example 2. 

 
a. The proposed model permits the study of a 

stiffened plate subjected to an arbitrary 
loading, while both the number and the 
placement of the nonintersecting stiffening 
beams are also arbitrary (eccentric beams 
are also included). 

b. The proposed model permits the evaluation 
of both the longitudinal and the transverse 
inplane shear forces at the interfaces 
between the plate and the beams, the 
knowledge of which is very important in 
the design of prefabricated plate beams  

 
 
structures (estimation of shear connectors in 
both directions). 
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Fig.8. Contour lines of the deflection wp (m) (a) taking into account and (b) ignoring the inplane interface 

forces of the stiffened plate of example 2. 
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c. The proposed model can handle stiffening 

beams of arbitrary cross section. Thereby, 
the eccentricities of both the centroid and 
the shear center axes with respect to the 
midline of the plate – beam interface are 
also included. 

d. The nonuniform torsion in which the 
stiffening beams are subjected is taken into 
account by solving the corresponding 
problem and by comprehending the arising 
twisting and warping in the corresponding 
displacement continuity conditions. 

e. The evaluated lateral deflections of the 
plate - beams system are found to exhibit 
considerable discrepancy from those of 
other models, which neglect inplane and 
axial forces and deformations. 
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