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Abstract: - The influence of inertia and elasticity on the onset and stability of 3-D thermal convection is 
examined for highly elastic polymeric solutions with constant viscosity. These solutions are known as Boger 
fluids, and their rheology is approximated by the Oldroyd-B constitutive equation. The onset and the stability 
of steady convective patterns, namely rolls, hexagons and squares, are studied in the post-critical range of the 
Rayleigh number by using an amplitude equation approach. The square pattern is found to be unstable. In 
contrast to Newtonian fluids, the hexagonal pattern can be stable for a certain range of elasticity. 
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1   Introduction 
While the problem of Rayleigh-Bénard (RB) 
thermal convection has been extensively 
investigated for Newtonian fluids [1], relatively little 
attention has been devoted to the thermal convection 
of viscoelastic fluids. Flow instability and 
turbulence are far less widespread in viscoelastic 
fluids than in Newtonian fluids because of the high 
viscosity of polymeric fluids. Green [2], Vest & 
Arpaci [3], and Sokolov & Tanner [4] were the first 
to conduct the linear stability analysis of RB 
convection of an upper-convected Maxwell fluid. 
Nonlinear RB convection of non-Newtonian fluids 
was considered by Eltayeb [5], Rosenblatt [6], 
Martinez-Mardones & Pérez-Garçia [7], Harder [8], 
and Park & Lee [9]. Weakly nonlinear analyses were 
conducted by Martinez-Mardones et al [10], and 
Parmentier, Lebon & Regnier [11]. Khayat 
developed a low-order dynamical system approach 
to study the effect of elasticity on thermal 
convection [12]-[15]. More recently, Li and Khayat 
examined more accurately pattern formation for 
weakly nonlinear flow [16]. 
    Some of the earlier experiments on the thermal 
convection of non-Newtonian fluids were conducted 
by Liang & Acrivos [17]. Their study, however, 
focused on the effects of shear thinning, which were 
found to enhance regularity in flow pattern. 
Kolodner [18] reported on and referred to recent 
experiments on the elastic behaviour of individual, 
long strands of DNA in buffer solutions, which seem 
to indicate the convective patterns take the form of 
spatially-localized standing and traveling waves that 
exhibit small amplitude and extremely long 

oscillation periods. The critical Rayleigh number for 
the onset of overstability is lower than for a 
Newtonian fluid, which is in agreement with linear 
stability analysis of viscoelastic fluids. Although 
both experiment and theory indicate that two-
dimensional rolls are favored at the onset of 
oscillatory or stationary convection, the emergence 
of three-dimensional patterns can be important. The 
prevalence of two-dimensional rolls, similarly to 
Newtonian flow, should be expected only near the 
onset, where the velocity gradients and therefore 
normal stresses are weak.  
    The linear stability analysis predicts the threshold 
for the onset of stationary or oscillatory RB 
convection. Once the instability threshold is 
obtained, the amplitude of the motion, the preferred 
pattern, the size of convective cells, and whether the 
nonlinear RB convection are unique or not can only 
be found via nonlinear analysis. The objective of the 
present study is to investigate the onset and stability 
of flow patterns in viscoelastic RB convection. A 
weakly nonlinear approach, amplitude equation 
method, is adopted. Details of the formulation and 
solution procedure are given by Li & Khayat [19]. 
The solutions of temperature, velocity, and stress 
components are expressed as series expansions in 
terms of the eigenfunctions of the linearized 
problem. These expansions are then substituted into 
the nonlinear equations and projected onto the 
eigenfunctions of the linear adjoint problem. This 
procedure results in an infinite set of ordinary 
differential equations that are then truncated by 
considering only a few sets of eigenfunctions. 
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2   Problem Formulation 
Consider an incompressible fluid confined between 
two infinite and flat plates at 2DZ −=  and 

2DZ = . Let 0T  and TT0 δ+  be the temperatures 

of the upper and lower plates, respectively, with 0T  
being the reference temperature and Tδ  being the 
temperature difference. In the present study, the fluid 
is assumed to obey the following equation of state: 

 
( ) ( )[ ]0T0 TT1T −α−ρ=ρ ,   (1) 

 
where ρ  and 0ρ  are the densities at the 

temperatures T  and 0T , respectively, and Tα  is the 

coefficient of volumetric expansion. Let D , κ2D , 

Dκ , 22
0 Dκρ , be, respectively, typical length, 

time, velocity and pressure, and 2Dηκ  be the 
typical stress. Here κ  is the thermal diffusivity and 
η  is the fluid viscosity. If the Boussinesq's 
approximationi is assumed to hold, then the 
dimensionless equations for the conservation of 
mass, momentum and energy, read, respectively: 

 
0u =⋅∇       (2) 

 

( )1
t

z

Pr ,
Rvp θ

Rv 1

− + ⋅∇

= −∇ + + Δ +∇⋅
+

u u u

e u τ
  (3) 

 
zt Raθ, euu ⋅+Δ=θ∇⋅+θ    (4) 

 
where ∇  is the gradient operator, and ∇⋅∇=Δ  
is the Laplacian operator. A subscript after a 
comma denotes partial differentiation. t  is the 
time, ( )w,v,uu =  is the velocity vector, p  is the 
pressure deviation from the steady state, and ze  is 
the unit vector in direction opposite to gravity. 

( )
νκ

−α
=θ s

3
T TTDg

 is the departure from the 

steady-state temperature, 
( ) T21DZTT 0s δ−−= , where g  is the 

acceleration due to gravity, and 0ρη=ν  is the 
kinematic viscosity. In this work, the fluids 
examined are highly elastic polymeric solutions 
with constant viscosity, η , and a single relaxation 
time,λ . These solutions are known as Boger 
fluids, and their rheology is approximated by the 

Oldroyd-B constitutive equation. The elastic part 
of the deviatoric stress tensor, τ , is given by [20] 

 

( )

( )

T
t

T

E ,

1
Rv 1

⎡ ⎤+ ⋅∇ − ∇ ⋅ − ⋅∇⎢ ⎥⎣ ⎦

⎡ ⎤= − + ∇ + ∇⎢ ⎥⎣ ⎦+

τ u τ u τ τ u

τ u u
,            (5) 

 
where a superscript T  denotes matrix 
transposition. There are four important 
dimensionless parameters in the problem, namely 
the Rayleigh number, Ra , the Prandtl number, 
Pr , the elasticity number, E , and the solvent-to-
solute viscosity ratio, Rv : 
 

νκ
αδ 3

TDTg = Ra , 
κ
ν = Pr , 2D

 = E λκ
,

 
p

sRv
η
η

= .                 (6) 

 
In this study, the stress free boundary conditions at 
the plates are considered, which is given by 
 

2

2
ww θ 0,at z 1 2,1 2

z

∂
= = = = −

∂
           .(7) 

 
With the exception of density, the fluid parameters 
are assumed to be independent of temperature. In 
contrast to Taylor-Couette flow, the influence of 
temperature on rheological parameters, namely the 
relaxation time and viscosity, is not expected to be 
significant. The major influence of temperature for 
Taylor-Couette is of dissipative nature, which is 
bound to be significant given the relatively high 
critical Taylor or Deborah number at the onset of 
instability. Thermal convection of polymeric fluids 
can happen at relatively low temperature gradient or 
Rayleigh number. Chewing-gum solutions can boil at 
room temperature. More importantly, while the base 
state for Taylor-Couette flow is purely azimuthal 
flow, that for Rayleigh-Benard convection is pure 
heat conduction. Thus, the absence of flow in the base 
state makes the influence of dissipation, and therefore 
the temperature dependence of the rheological 
parameters, essentially negligible. 
    The solution of problem (1)-(7) is obtained by first 
carrying a linear stability analysis around the 
conductive state. In the postcritical range of Rayleigh 
number, the flow, temperature and stress fields are 
expanded in terms of the eigenfunctions of the 
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linearaized flow. A Galerkin projection is carried out 
to obtain the equations that govern the expansion 
coefficients. These are of the Landau Ginsburg type 
[19]. 
 
3   Results and Discussion 
For a small value of E  or a large value of Rv , one 
expects the behaviour of the flow to be similar to the 
Newtonian regime, at least around the purely 
conductive state. Similarly to the case of a Newtonian 
fluid, one of the steady-state solution branches 
corresponds to pure heat conduction. As Ra  exceeds 
a critical value, the conduction state loses its stability 
to steady convection. In contrast to Newtonian fluids, 
which admit only rolls in the post-critical range, 
viscoelastic convection can be in the form of rolls or 
hexagons depending on the level of elasticity (see 
below).  
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FIG. 1. Stability picture obtained with amplitude equation method 
for two convection patterns, namely roll and hexagon. This figure 
shows the stable range of roll and hexagonal patterns on ( )E,r  

plane for a fluid with 1000Pr =  and 75.3Rv = . H  and 
R  represent stable regions for hexagonal and roll patterns, 
respectively, C  the stable heat conduction state, and O  the 

oscillatory convection. HE  represents the critical elasticity 
number for the emergence of three-dimensional convective pattern 

(hexagon), while hE  is the elasticity level corresponding to the 
onset of oscillatory convection. 

 
    Parmentier et al. [11] carried out a weakly 
nonlinear stability analysis of Bénard-Marangoni 
convection of viscoelastic fluids using an amplitude-
equation method. Three cell patterns consisting of 
rolls, hexagons, and squares have been examined for 
stationary convection; oscillatory convection was not 
considered. The roll pattern was predicted to be stable 
for only small elasticity number ( 0035.0E < ) near 
criticality, and the three-dimensional hexagonal 
pattern was found to be stable for 

[ ]07.0,0035.0E∈ , for a fluid with 1000Pr =  and 
01.0Rv ≈ . The square pattern was found to be 

always unstable (at least near criticality). It is 
observed that, according to the current linear stability 
analysis, the limit 07.0E =  corresponds to the 
critical elasticity number for the emergence of 
oscillatory thermal convection.  
    In this section, the amplitude equations are used to 
examine parameter ranges for three-dimensional 
stationary convection that have not been covered by 
Parmentier et al. [1] The stability of the steady rolls, 
hexagons and squares is determined through linear 
stability analysis of the steady state solutions of the 
amplitude equations [11] pertaining to each pattern. 
The current calculations are based on the free-free 
boundary conditions only, and indicate that the 
viscosity ratio has a strong influence on the stable 
ranges of stationary roll and hexagonal patterns. The 
square pattern is found to be always unstable. The 
stability picture is best illustrated in the ( )E,r  plane. 
Alternatively, the stability picture could be examined 
in the (r, De) plane, where De is the Deborah number. 
However, additional calculations (not included here) 
show that the De varies linearly with E, and, therefore 
no new qualitatively different insight would be 
gained. Fig. 1 shows typically the regions of existence 
of roll and hexagonal patterns for a fluid with 

75.3Rv =  and 1000Pr = . In the figure, H  and R  
denote stable hexagonal and roll regions, respectively. 
In contrast to the prediction of Parmentier et al. there 
is no region where both hexagon and roll patterns 
coexist, as a result of the use of different boundary 
conditions here. Despite this discrepancy, qualitative 
agreement is obtained regarding the stable ranges of 
hexagonal and roll patterns. For relatively small E , 
the conductive state, C , is lost to two-dimensional 
stationary convection (rolls) when r  exceeds unity. 
When the level of elasticity exceeds a critical value 

HE , but remains smaller than hE  (elasticity level 
corresponding to the onset of oscillatory convection), 
only the hexagonal pattern is stable at the onset of 
stationary convection. Beyond hE , oscillatory 
convection sets in. Thus, inertia tends to enhance the 
onset of convective rolls. It is found that HE  
increases linearly with r , which seems to be the case 
for other values of Rv  and Pr . The figure also 
indicates that HE  can be larger than hE  at higher 
Rayleigh number, which means that both stationary 
roll and oscillatory convection become possible. This 
region is indicated by RO  in the figure. For 

hEE > , the conductive state loses its stability at 
1r <  as predicted by linear stability analysis. 
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Similarly, there is a region marked by HO , where 
both stationary hexagons and oscillatory convection 
are possible.  
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FIG.2. Influence of Pr  on the critical elasticity number HE  for 

different value of Rv . The curves show that HE  decreases 
monotonically with Pr . 
 

The dependence of HE  on the fluid parameters is 
summarized in Fig. 2 and 3, where HE  is plotted 
against Pr  and Rv  at 1.1r = , respectively. Fig. 2 
shows the influence of Pr  on HE  for [ ]5,0Rv∈ . 
Two distinct regimes can be discerned from Fig. 2.  
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FIG. 3. Influence of Rv  on the critical elasticity number HE  
for different value of Pr . The curve show the linear dependence 

of HE  on Rv  when 5.0Rv > . 
 

For small Pr  values, HE  drops sharply like 93.0Pr  
regardless of the viscosity ratio. In this range, the roll 
pattern appears to be preferred unless E  is relatively 
large. Thus, rarefied gases ( 1Pr <<  and 0Rv = ) 
would exhibit a predominantly roll pattern. For larger 
Pr  values, HE  remains essentially constant. The 
curves become flattened, which indicates that for 
typical polymeric solutions ( 1Pr >> ), the influence 

of Pr  on the stationary convective patterns is not 
significant. Thus, it is the viscosity ratio of the 
polymeric solution that determines the likelihood for 
two- or three-dimensional convection. Note that HE  
tends to infinity, for any Pr , in the limit of a 
Newtonian fluid ( ∞→Rv ). This can be seen more 
clearly from Fig. 3, which shows the increase of HE  
with Rv  for several values of Pr . The increase is 
slow when Rv  is relatively small. For large Rv , the 
figure indicates that HE  is simply proportion to Rv , 
and this behaviour may be given by 
 

022.0Rv07.0EH −≈ ,  ( 1Pr >> ) (8) 
 
Thus, similarly to elasticity, viscosity tends to 
precipitate the emergence of three-dimensional 
convection, as well as the onset of oscillatory 
behaviour. There is thus a synergetic interplay 
between elastic and viscous effects regarding the loss 
of stability of the roll pattern. The stable range of 
two-dimensional roll pattern is significantly widened 
with increasing Rv , which is of course expected as 
the contribution of the Newtonian solvent increases. 
Recall, that in the Newtonian limit, only rolls are 
predicted, regardless of the nature of boundary 
conditions usedii. 
    Unlike the critical Rayleigh number, S

CRa  at the 
onset of stationary thermal convection, the amplitude 
of convection is strongly influenced by fluid 
elasticity, viscosity ratio, and Prandtl number. It is 
convenient to monitor the response of the Nusselt 
number, Nu , as Ra  is increased in the post-critical 
range. The Nusselt number is defined in terms of the 
heat flux, Q , at the lower plate, averaged over a cell 
width: 
 

( )

( )yxq yxik

p q

p
q

p
q

z

e
2

pcospA
Ra
11

t,21z,y,x,
Ra
11Nu

ee ⋅+⋅∑∑ ⎟
⎠
⎞

⎜
⎝
⎛ π

πΘ−=

−=θ−=

,     (9) 
 
where  denotes double integration over 

[ ]k2,0x π∈  and [ ]k2,0y π∈ .  
    The influence of fluid elasticity on the steady 
bifurcation picture of roll pattern is depicted in Fig. 4, 
where Nu  is plotted against r  for [ ]2.0,0E∈ , 

75.3Rv = , and 7Pr = . E  is chosen relatively 
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small to insure that the exchange of stability between 
conductive state and stationary roll pattern is valid. 
The figure indicates that fluid elasticity tends to 
prohibit heat transport, relatively to a Newtonian 
fluid. The bifurcation is supercritical, reflecting a 
gradual increase in Nu  as r  exceeds slightly one.  
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FIG.4. Bifurcation diagrams and influence of elasticity on 
stationary thermal convection of roll patterns. Nusselt number is 
plotted against the reduced Rayleigh number r  for 

[ ]2.0,0E∈  with 75.3Rv =  and 7Pr = . 
 
Near the critical point, the influence of E  is gradual, 
with Nu  decreasing almost linearly as E  increases.  
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FIG.5. Bifurcation diagrams and influence of viscosity ratio on 
stationary thermal convection of hexagonal patterns. Nusselt 
number is plotted against the reduced Rayleigh number r  for 

[ ]4.0,2.0E∈  with 75.3Rv =  and 7Pr = . 

 
At higher r  values, the drop in Nu  between two 
successive E  values is largest near 0E = . Thus, 
elasticity appears to affect little the steady-state 
thermal convection for the higher Rayleigh number 
range. Physically, one expects the dependence of Nu  
on E  to be continuous as the flow deviates from the 

Newtonian limit. At higher elasticity level, the 
conductive state loses its stability to stationary 
hexagonal convective pattern as r  exceeds one. The 
steady bifurcation picture of hexagonal pattern is also 
supercritical as depicted in Fig. 5, the plot of Nu  
against r  for [ ]4.0,2.0E∈ , 75.3Rv = , and 7Pr = . 
The drop in Nu  between two successive E  values 
becomes larger as r  increasing, which indicates that 
elasticity affects much the steady-state thermal 
convection for the higher Rayleigh number range. For 

75.3Rv = , elasticity tends to prohibit heat transport. 
However, this is not always the case. The heat 
transport is actually enhanced with increasing 
elasticity as depicted in Fig. 6, which is the plot of 
Nu  against E  for [ ]6,2Rv∈ , 2r = , and 10Pr = . 
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FIG.6. Influence of elasticity on stationary thermal convection of 
hexagonal pattern. Nusselt number is plotted against the elasticity 
number E  for 2r =  with 75.3Rv =  and 7Pr = . 
 
    The influence of viscosity ratio on Nusselt number 
for steady roll pattern is shown in Fig. 7, which 
parallels the influence of elasticity as Rv  decreases. 
Recall that as the (Newtonian) solvent viscosity 
decreases, the effective elasticity of the fluid becomes 
more significant. Indeed, the figure indicates that Nu  
decreases with decreasing Rv  for a given r . Fig. 4, 
5, and 7 seem to suggest that there is little influence 
of fluid elasticity or relaxation on the amplitude of 
steady convection when r  is close to one. This 
observation is in agreement with the measurements of 
Liang & Acrivos [17]. It is important to observe that 
the physical significance of the branch curves in Fig. 
4, 5, and 7 become clear only when the stability of 
these branches is known. It is found that Prandtl 
number has less influence on the amplitude of both 
roll and hexagonal convective patterns. For fixed 
elasticity number and viscosity ratio, Nusselt number 
keeps essentially the same as Pr  varies from 1 to 
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1000, as shown in Fig. 8, which is the plot of Nu  for  
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FIG. 7. Bifurcation diagrams and influence of viscosity ratio on 
stationary thermal convection of roll patterns. Nusselt number is 
plotted against the reduced Rayleigh number r  for 

[ ]∞∈ ,5Rv  with 1.0E =  and 7Pr = .  

 
steady hexagonal pattern against r  for 3.0E =  and 

75.3Rv = .  The inset clearly shows an asymptotic 
behaviour. 
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FIG.8. Bifurcation diagrams and influence of Pr  on stationary 
thermal convection of hexagonal patterns. Nusselt number is 
plotted against the reduced Rayleigh number r  for 

[ ]1000,1Pr∈  with 75.3Rv =  and 3.0E = . Inset 

shows the asymptotic behaviour of Nu  against Pr . 
 
4   Conclusion 
The finite-amplitude thermal convection for a thin 
layer of a viscoelastic fluid of the Oldroyd-B type is 
examined in this study. An amplitude equation 
approach is used to study the stability of stationary 
convective patterns, namely rolls, hexagons and 
squares, in the post-critical range of the Rayleigh 
number.. Square patterns are found to be unstable for 
any parameter range. Steady hexagonal patterns are 
predicted to be stable for certain range of elasticity 

number, which is in contrast to the Newtonian case, 
where only rolls are predicted to be stable. The 
influence of the Prandtl number and the viscosity 
ratio on the stability of rolls and hexagons are 
examined. It is found that the viscosity ratio plays a 
more important role in determining the likelihood of 
the two- or three-dimensional patterns for typical 
polymeric solutions.  
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