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Abstract: We consider viscous compressible flows with spherical symmetry under the action of gravitation and
a prescribed outer pressure, outside a rigid core, in order to analyze the stability properties of simple models of
gaseous stars. For a general (possibly non-monotone) state function p = p(ρ), we present global-in-time bounds
for solutions with arbitrarily large data. In the case of a non-decreasing p, the ω-limit set for the density ρ may
be identified. In the more standard case of a strictly increasing p, uniqueness and static stability of the stationary
solutions may be investigated together with stabilization rate estimates toward the statically stable solutions.
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1 Introduction
Astrophysics tells us [1] [2] that the existence on large
time scales of classical gaseous stars is due to a sub-
tle equilibrium between gas properties (gaseous pres-
sure, radiation, nuclear energy production) which lead
to an expansion of the gas in the interstellar medium,
and selfgravitation which produces a contraction of
the system (the so called gravitational collapse).

In some physical situations it makes sense to
study the purely mechanical competition between the
gaseous pressure and the gravitation, discarding the
exact roles of radiation and thermonuclear processes.
This is the case in the standard Eddington’s model
[1]), in which a constant ratio β between the gaseous
part pg and the radiative part prad of the pressure is
assumed at any point in the star. Observations show
[2] that this assumption is valid for stars of mass
m ∼ 10� (ten solar masses), with β ∼ 0.8.

Moreover it is also important to consider mono-
tone (polytropic case [1]) as well as non-monotone
equations of state (neutron star case [10]).

2 The spherically symmetric free-
boundary problem

Let us consider the following compressible Navier-
Stokes system

ηt = (r2v)x, η = 1/ρ,

vt = r2
[

µ(ρ)ρ(r2v)x − p(ρ)
]

x
+ f [r],

rt = v,

in the domain Q := J ×R
+ with J := (0,M), where

the unknown density ρ, the velocity v and the radius r
depend on the lagrangian mass coordinates (x, t).

We supplement the system with boundary and ini-
tial conditions

v|x=0 = 0,
[

µ(ρ)ρ(r2v)x − 4µ1(ρ)
v

r
− p(ρ)

]
∣

∣

∣

∣

x=M
= −pΓ(t),

for t > 0, and

(ρ, v, r)|t=0 =
(

ρ0, v0, r0
)

(x),

for x ∈ J , where

1

3
(r0)3 = V0 +

∫ x

0

dξ

ρ0(ξ)
, V0 =

1

3
r3
0, and r0 > 0.

In this model, the fluid is supposed to be viscous. In
fact our assumptions concerning them will be of math-
ematical nature (see below) as viscosity coefficients
in astrophysical fluids are not precisely identified. All
that physics can tell us is they are very small [3].

Moreover the motion takes place in a domain Ω
surrounding a hard core (supposed to be inert) with ra-
dius r0, and the external surface of Ω is a free bound-
ary. The existence of a hard core is required as, from
a physical point of view, matter is very dense in the
central region of the star, and quantum and relativistic
effects are requested if one desires to obtain a more
complete information on the dynamics. Our aim is
more modest and we replace this ill-known region by
a hard core with Dirichlet condition for the velocity.
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The free-boundary condition is more involved to
be justified. In fact the star is evolving in the vac-
uum or at least in a very rarefied medium. As con-
tact of a gas with vacuum is a complex problem from
both modelization and mathematical point of view, we
model the underdense matter at the boundary by an
external time-dependent, but fixed pressure, playing
the role of a stellar atmosphere.

So we postulate an external pressure pΓ of the
form

pΓ(t) = pΓ,S + ∆pΓ(t),

where pΓ,S > 0 and ∆pΓ(t) is a perturbation.
The (gravitational) mass force f has the form

f(r, x, t) = fS(r, x) + ∆f(r, x, t),

where fS(r, x) = −GM0+j0x
r2 with G > 0, M0 ≥ 0,

j0 = 0 or 1, but fS 6≡ 0, and ∆f(r, x, t) is a perturba-
tion. The case j0 = 1 corresponds to a selfgravitating
fluid, the simpler case j0 = 0 supposes that selfgravi-
tation is neglected and only the newtonian attraction
by an effective central mass M0 (the rigid core) is
taken into account [4].

Finally, we use the notation f [r](x, t) :=
f(r(x, t), x, t).

Some related mathematical results on close prob-
lems may be found in [5]-[9].

3 Global bounds and stabilization
We consider a general state function p continuous on
R

+
, satisfying only p(0) = 0, lims→∞ p(s) = +∞,

and p′ ∈ L∞
loc(R

+).
The viscosity coefficients µ and µ1, supposed

to be continuous on R
+, are such that µ′, µ′

1 ∈
L∞

loc(R
+) and satisfy

0 < µ ≤ µ(s), −µ
1
≤ µ1(s) ≤ µ1 <

4

3
µ,

for s > 0.
We also suppose that ∆f(r, x, t) is measurable

on (r0,∞) × Q, continuous with respect to (r, x) ∈
[r0,∞) × J for almost all t ≥ 0 and that

|∆f(r, x, t)| ≤ f1(t) + f2(t),

with f1 ≥ 0 and f 2 ≥ 0.
Throughout this paper we also suppose that

‖f1‖L1(R+) + ‖f2‖L2(R+) + ‖∆pΓ‖L2(R+) ≤ N,

for a given parameter N > 1.
We study strong solutions for the above problem,

satisfying

ρ ∈ C(QT ), ρx, ρt ∈ C([0, T ];L2(J)),

min
QT

ρ > 0, v ∈ H1(QT ),

and
vxx ∈ L2(QT ),

for any T > 0, where QT := J × (0, T ).
They do exist under the necessary conditions:

ρ0, v0 ∈ H1(J), min
J

ρ0 > 0, and v0(0) = 0

together with f1 ∈ L2(0, T ), p′Γ ∈ L1(0, T ), for any
T > 0.

Let us introduce the primitive functions

P0(s) :=

∫ s

1

p(ζ)

ζ2
dζ,

and

F (r, x) := −G

(

1

r0
−

1

r

)

(M0 + j0x),

and recall the energy conservation law

d

dt
(E + F [ρ]) +

∫

J
µ(ρ)ρ(r2v)2xdx − 4Rµ1(ρM )v2

M

=

∫

J
∆f [r]v dx − ∆pΓR2vM ,

where

E :=
1

2

∫

J
v2dx

is the kinetic energy, and

F [ρ] :=

∫

J

(

P0(ρ) + pΓ,Sρ−1 − F [r]
)

dx

is the potential energy.
The notations F [r](x, t) = F (r(x, t), x) and

ΨM := Ψ|x=M are used. Accordingly, R = rM is
the radius of the free boundary.

Let K = K(N), Ki = Ki(N), i = 0, 1, ...,
be positive non-decreasing functions of N which may
possibly depend on p, µ, µ1, G,M0,M etc.

We first state uniform bounds for the solutions.

Theorem 1 1. Under the following condition on the
data

∥

∥

∥v0
∥

∥

∥

L2(J)
+

∥

∥

∥P0(ρ
0)

∥

∥

∥

L1(J)
≤ N, (1)

the uniform energy bound holds

sup
t≥0

(

E(t) + ‖P0(ρ)(·, t)‖L1(J) + VM (t)
)

+

∥

∥

∥

∥

√

µ(ρ)ρ(r2v)x

∥

∥

∥

∥

L2(Q)
≤ K, (2)
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where

V (t) :=
1

3
r3 = V0 + Iη,

with (Iφ)(x) :=
∫ x
0 φ(ξ) dξ.

2. Under the conditions (1) and ρ0 ≤ N , the
uniform upper bound

sup
Q

ρ ≤ K,

holds. Moreover the energies stabilize

E(t) → 0 and F [ρ](t) → F (S) as t → ∞. (3)

3. Under the conditions (1) and N−1 ≤ ρ0, one
has the uniform lower bound

K−1 ≤ inf
Q

ρ.

4. Under the conditions p ∈ C1(R+), p′ > 0,
N−1 ≤ ρ0 and

∥

∥v0
∥

∥

L2(J) +
∥

∥ρ0
∥

∥

H1(J) ≤ N , one has

the uniform H1-bound

sup
t≥0

‖ρ(·, t)‖H1(J) ≤ K.

5. Under the conditions of Claim 4 together with

‖v0
x‖L2(J) ≤ N, f1 = 0, ‖p′Γ‖L2(R+) ≤ N, (4)

the uniform H1-bound

sup
t≥0

‖v(·, t)‖H1(J) ≤ K,

holds as well, which implies that

‖v(·, t)‖C(J) → 0 as t → ∞.

Notice that Claims 1 and 2 imply the uniform bounds
supt≥0 R(t) ≤ K and r0 + K−1 ≤ inft≥0 R(t) for
the “free” radius.

We introduce now the static problem

px(ρS) =
fS [rS ]

r2
S

, on J, (5)

p(ρS)|x=M = pΓ,S , (6)

with VS := 1
3r3

S = V0 + IηS , and ηS = 1
ρS

.
We consider stationary solutions ρS ∈ L∞(J),

with ess infJρS > 0 and p(ρS) ∈ C1(J). Note that
p(ρS) decreases and satisfies pΓ,S ≤ p(ρS) ≤ pS :=

pΓ,S + G
(

M0 + 1
2j0M

)

M
r4
0

on J . Let RS := rS(M)

be the radius of the static free boundary.
Let us state stabilization properties of ρ in the case

of general non-decreasing state function p.

Theorem 2 Suppose that p′(s) ≥ 0 with p(s) > 0 for
s > 0, and that conditions N−1 ≤ ρ0 ≤ N and
∥

∥v0
∥

∥

L2(J) ≤ N are valid. Then for any sequence
tn → +∞, there exists a subsequence θn such that

η(·, θn) → η∗(·) weakly star in L∞(J) (7)

with some η∗ ∈ L∞(J). Moreover, for any sequence
θn → ∞, θn ≥ 0 such that (7) holds, in fact ρS := 1

η∗
is a stationary solution the potential energy of which
satisfies the equality

FS [ρS ] :=
∫

J
P0(ρS) + pΓ,Sρ−1

S − F [rS ] dx = F (S), (8)

where F (S) is given by (3), K−1 ≤ ρS ≤ K , rS is
such that 1

3r3
S = V0 + I(1/ρS), and the limit relation

holds

ρ(·, θn) → ρS(·) in Lλ(J), ∀ 1 ≤ λ < ∞. (9)

Note that (9) implies that p(ρ(·, θn)) → p(ρS(·)) in
Lλ(ΩS), ∀ 1 ≤ λ < ∞, and R(θn) → RS . Ac-
cordingly, a by-product of the theorem is an existence
result for the static problem.

Let us define the ω−limit set for the density Oρ

as the set of functions ρ∗ := 1
η∗

∈ L∞(J), where η∗
satisfies the limit relation (7), for some subsequence
θn → ∞, θn ≥ 0, and study its properties.

Theorem 3 Let the hypotheses of theorem 2 be valid.
Then the ω−limit set Oρ has the following properties.

1. If ρ∗ ∈ Oρ, then ρ∗ = ρS is a stationary solution
with fixed potential energy (8), moreover the limit
relation (9) holds for the same sequence θn as in
the property ρ∗ ∈ Oρ.

2. Oρ is a compact, connected and attracting set in
Lλ(J), for any 1 ≤ λ < ∞.

Here, the attracting property means that

inf
ρ∗∈Oρ

‖ρ(·, t) − ρ∗(·)‖Lλ(J) → 0 as t → ∞.

Corollary 1 Let the hypotheses of Theorem 3 be
valid. If, for any real a, there exists at most a count-
able set of stationary solutions satisfying FS [ρS ] = a,
then, for some of the solutions satisfying FS [ρS ] =

F (S), the stabilization of ρ in a standard sense holds

ρ(·, t) → ρS(·) in Lλ(J), ∀ 1 ≤ λ < ∞. (10)
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Corollary 2 Let the hypotheses of Claim 4 in theorem
1 be valid. Then theorem 2, theorem 3 and corollary
1 may be improved by replacing the space Lλ(J) by
C(J). In particular ρ(·, t) → ρS(·) in C(J) instead
of (10).

Note that, in the case where the equation p(s) =
p(ρS(x0)) has non-unique solutions for some x0 ∈ J ,
the function ρS has a jump at x = x0, and thus replac-
ing Lλ(J) by C(J) is impossible in (9) or (10).

4 Dynamical stability and stabiliza-
tion rates

Let us consider the static problem (5)-(6) supposing
that in all the sequel p ∈ C1(R+), p′ > 0.

We set p̂(s) := p(s−1) and h(ν, x) :=

−GM0+j0x
(3ν)4/3 . Let also p(ρΓ,S) = pΓ,S .
First, we give some uniqueness conditions.

Proposition 1 1. Under the conditions

GM

r0C(1)(ρΓ,S)
≤ 1, (11)

with C(1)(s0) := infs≥s0 p′(s) > 0, the static prob-
lem has a unique solution.

2. Under the conditions

2GM2(2M0 + j0M)

r7
0C

(2)(ρΓ,S)
≤ q, (12)

with C(2)(s0) := infs≥s0 s2p′(s) > 0 for some 0 ≤
q ≤ 1, the inequality holds

B(η1, η2) :=

∫

J
{(p̂(η2) − p̂(η1)) (η1 − η2)

+ (h[V2] − h[V1]) (V1 − V2)} dx

≥ C(2)(ρΓ,S)(1 − q)‖η1 − η2‖
2
L2(J), (13)

for all ηj ∈ C(J), 0 < ηj ≤ ρ−1
Γ,S , j = 1, 2, with

Vj := V0 + Iηj .
Moreover the inequality is strict provided that

η1(M) = η2(M) and η1 6≡ η2.
Consequently, under condition (12) with q = 1,

the static problem has a unique solution too.

By eliminating the functions ρS and rS , we reduce the
problem to the equivalent boundary value problem for
the following quasilinear second order ODE

p̂x((VS)x) = h[VS ] on J,

VS(0) = 0, p̂((VS)x)(M) = pΓ,S, (14)

for the function VS ∈ C1(J), ((VS)x)min > 0; here-
after φmin := minJ φ(x).

One can linearize the problem near the solution
VS and then pass to the corresponding eigenvalue
problem for the second order linear ODE

p̂′x((VS)x)Wx +
4h[VS ]

3VS
W = λa0W on J,

W (0) = 0,
(

p̂′((VS)x)Wx
)

(M) = 0, (15)

for some a0 ∈ C(J), (a0)min > 0.
Let λmin[ρS ] be the minimal eigenvalue of this

problem (with ρS = ((VS)x)−1).
ρS is called statically stable provided that

λmin[ρS ] > 0. One checks that this definition is inde-
pendent of the choice of a0.

Now one observes that the statically stable solu-
tions are strongly isolated in the following sense.

Proposition 2 If ρS is a statically stable solution,
then, for some ε0 > 0 small enough, there ex-
ists no stationary solution ρ

(1)
S 6= ρS such that

∣

∣

∣VS(M) − V
(1)
S (M)

∣

∣

∣ =
∣

∣

∣

∫

J(ηS − η
(1)
S ) dx

∣

∣

∣ < ε0,

where V
(1)
S (M) = V0 + Iη

(1)
S and η

(1)
S = 1

ρ
(1)
S

.

Corollary 3 The set of the statically stable solutions
is at most finite.

Corollary 4 Let conditions N−1 ≤ ρ0 ≤ N and
‖v0‖L2(Ω) + ‖ρ0‖H1(Ω) ≤ N be valid. Suppose also
that Oρ contains a statically stable solution ρS . Then

Oρ\{ρS} = ∅,

and the stabilization property ρ(·, t) → ρS(·) in C(J)
holds.

Let us discuss now variational aspects of the problem.
We can rewrite the static potential energy as

F [ρS ] = P[VS ]

:=

∫

J

(

P̂0(DVS) + pΓ,S(VS)x − H[VS ]
)

dx,

where

P̂0(s) := P0(s
−1) = −

∫ s

1
p̂(ζ) dζ,

and

H(ν, x) = −G

(

1

(3V0)1/3
−

1

(3ν)1/3

)

(M0 + j0x).

Let us introduce the subspace

C̃1(J) :=
{

W ∈ C1(J) ; W (0) = 0
}

,
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together with the open set

S :=
{

V ∈ C1(J), V (0) = V0 ; (Vx)min > 0
}

,

on an hyperplane of C1(J), and consider the values of
P[V ] on S . The first and second variations of P are
given by the formulas

δP[V ](W ) :=
d

dτ
P[V + τW ]

∣

∣

∣

∣

τ=0

=

∫

J
{(pΓ,S − p̂(Vx))Wx − h[V ]W} dx

and

δ2P[V ](W ) :=
d2

dτ2
P[V + τW ]

∣

∣

∣

∣

∣

τ=0

=

∫

J

{

(−p̂′(Vx)(Wx)2 +
4h[V ]

3V
W 2

}

dx,

for any W ∈ C̃1(J). The identity δP[VS ](W ) = 0

for all W ∈ C̃1(J) is equivalent to relations (14), i.e.
the stationary points of P are solutions of the static
problem (14).

Now, the positivity condition

δ2P[VS ](W ) > 0, for all W ∈ C̃1(J), W 6≡ 0,

is equivalent to the condition λmin[ρS ] > 0, since
δ2P[VS ] is the energy functional of the eigenvalue
problem (15), where once again ρS = ((VS)x)−1.

Let us present an extremal characterization of the
statically stable solutions.

We say that V ∈ S is a point of local quadratic
minimum of P if

P[V + W ] −P[V ] ≥ δ0‖W‖2
H1(J),

∀W ∈ C̃1(J), ‖W‖C̃1(J) ≤ ε0,

for some ε0 > 0 and δ0 > 0.

Proposition 3 V ∈ S is a point of local quadratic
minimum of P if and only if VS is a solution of the
static problem (14) such that λmin[ρS ] > 0.

Notice that inequality (13), for some 0 ≤ q < 1, en-
sures the strong monotonicity of δP on the set

{V ∈ S ; Vx ≤ ρ−1
Γ,S},

since B(η1, η2) = (δP[V1] − δP[V2]) (V1 − V2).
In the following we use also the weaker condition

B̃(η1, ηS) ≥ C0,ε‖η1−ηS‖
2
L2(J), ∀η1 ∈ C(J), (16)

with ε ≤ η1 ≤ ε−1, for some ηS = (VS)x with VS ∈
S and any ε > 0 small enough, with C0,ε > 0.

Under this condition, VS is the point of global
quadratic minimum of P on the sets {V1 ∈ S ; ε ≤
(V1)x ≤ ε−1}, for ε ≤ ρ−1

Γ,S , since P[V1] − P[VS ] ≥

C0,ε/2 ‖(V1 − VS)x‖
2
L2(J).

Let

Γ1(s) :=
sp′(s)

p(s)
,

for s > 0, be the so-called first adiabatic exponent of
the gas. Obviously Γ1(s) ≡ γ in the polytropic case
p(s) = p1s

γ .

Theorem 4 Suppose that

Γ1(s) ≥ 4/3,

for ρΓ,S ≤ s ≤ ρS , where p(ρS) = pS . Then

1. the static problem (5)-(6) has a unique solution,

2. this solution is statically stable.

Now we turn to stabilization rate estimates and to the
nonlinear dynamic stability (of exponential type) for
the statically stable stationary solutions. We introduce
the stabilization errors, for i = 0, 1 and j = 0, 1

δi,j(t) := ‖ρ(·, t) − ρS(·)‖Hi(J) + ‖v(·, t)‖Hj (J),

where H0(J) = L2(J).

Theorem 5 Let conditions p ∈ C1(R+), p′ > 0,
N−1 ≤ ρ0 ≤ N and ‖v0‖L2(Ω) + ‖ρ0‖H1(Ω) ≤ N
be valid. Then

1. Let Oρ contain a statically stable solution ρS .
The following L2-stabilization rate bound holds

δ0,0(t) ≤ K0

(

ea0(t0−t)δ0,0(t0)

+‖ea0(τ−t)(f1 + f2)(τ)‖L1(t0 ,t)

+‖ea0(τ−t)∆pΓ(τ)‖L2(t0,t)

)

. (17)

If in addition p′′ ∈ L∞(R+), then the following com-
bined bound holds

δ1,0(t) ≤ K1

(

ea1(t0−t)δ1,0(t0)

+‖ea1(τ−t)(f1 + f2)(τ)‖L1(t0 ,t)

+‖ea1(τ−t)∆pΓ(τ)‖L2(t0,t)

)

. (18)

Moreover if conditions (4) are valid, then one gets the
H1-bound

δ1,1(t) ≤ K2

(

ea2(t0−t) (δ1,1(t0) + |∆pΓ(t0)|)
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+‖ea2(τ−t)f2(τ)‖L2(t0,t) + ‖ea2(τ−t)∆pΓ(τ)‖L2(t0,t)

+‖ea2(τ−t)p′Γ(τ)‖L1(t0,t)

)

. (19)

Here t ≥ t0 for sufficiently large t0, and al := 1/Kl,
for l = 0, 1, 2.

2. Let ρS be any statically stable stationary solu-
tion (contrary to Claim 1). If the data are sufficiently
close to the stationary ones, namely

‖ρ0−ρS‖L2(J)+‖v0‖L2(J)+‖f1‖L1(R+)+‖f2‖L2(R+)

+‖∆pΓ‖L2(R+) ≤ ε0, (20)

for ε0 > 0 small enough, then all the stabilization rate
bounds (17)-(19) hold for t0 = 0, and the quantities
Kl, al are independent of the data.

Moreover this nonlinear dynamical stability re-
sult holds even for non-monotone p provided that

p′(s) > 0 on some (s1, s2) ⊃ ρS(J). (21)

3. Let now ρS satisfy condition (16), which is
more restrictive than the condition on ρS in Claim 2.

Then the stabilization rate bounds (17)-(19) hold
for t ≥ t0 = 0, with Kl independent of the data,
without the smallness condition (20).

Notice that bound (17) together with the inequality

K−1|R(t) − RS | ≤ ‖ρ(·, t) − ρS(·)‖L2(J),

for t ≥ t0, insure the stabilization rate bound for
R(t) − RS as well.

Condition (21) means that the values of ρS belong
to an interval where p is stable.

Note that an interesting physical study of related
stability problems has been recently given in [11].

The above results follow [12]-[13] where much
more general information can be found including the
corresponding study in the Eulerian coordinates.

5 Conclusion and comments
Our barotropic spherical model is an oversimpli-
fication of the 3D-astrophysical situation (see [3])
where various phenomena can take place (thermonu-
clear reactions, magnetohydrodynamic effects, radia-
tive transfert...), and which is probably out of reach of
present studies.

The dynamical boundary condition for the pres-
sure on the free-boundary is a phenomenological
modelling for a complex physical situation. In fact
a better approximation would consist in coupling a ra-
diative Navier-Stokes flow for the bulk star to a ki-
netic description for the surrounding underdense at-
mosphere, which is, to our knowledge, an open prob-
lem in this context.

Acknowledgements: A. Zlotnik was partially sup-
ported by RFBR, grant 04-01-00539.
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