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Abstract:  This paper investigates water quality control problem in streams taking into consideration time delays and 
system constraints. After decomposing the system into N subsystems, a distributed controller  is proposed to solve the 
problem. The proposed controller consists of two parts, the closed loop part and the open loop one. The closed loop 
part guarantees reliable system operation under failure conditions, whilst the open loop part insures both optimality 
and the satisfaction of system constraints. Application to the problem of controlling the concentrations of biochemical 
oxygen demand and dissolved oxygen in a five reach river system is given which also illustrates the effectiveness of 
the developed procedure. 
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1   Introduction  
With the extension of civilization and development, 
major environmental problems have been created. 
Among these problems, is that associated with  the 
increase of pollution levels in streams. In general, 
pollutions may arise due to chemical wastes, radio- 
active materials, heat, biochemical or biological 
activities taking place in the water body as a result of 
discharging industrial effluents, and/or sewage into 
rivers and/or algae growth and its associated wastes 
resulting from its life cycle. This, of course, leads to a 
disturbance in the ecological balance of the water 
system which may affect all aspects of life. What is 
essentially required in a river system is to maintain 
pollution levels within reasonable bounds to satisfy 
community needs, the ecological balance in the stream 
and water quality standards.  
On the other hand, wastes are normally treated prior to 
discharge into streams. Increasing treatment levels 
beyond certain limits will dramatically increase the 
cost. It is, therefore, more realistic to handle such a 
problem as an optimization problem with constraints 
on the states and/or controls. 
Moreover, since streams are characterized by their 
geographically distributed nature, time delays required 
for pollutants transportation through the river system 
become an important factor which cannot be neglected 
while solving this problem. As a result of these 
features imposed by the physical nature of this 

problem, we are facing an optimization problem with 
time delays and system constraints.  
Time delay control systems, have been solved using 
different approaches. Robust control methodologies 
constitute a class of these techniques which have been 
used to design feedback controllers to guarantee 
system stability. A lot of work was reported in the 
literature on this subject, among them we quote the 
works [1-3]. Another class of approaches is based on 
using auxiliary variables to approximate time delay 
variables, then applying the well developed techniques 
to control the behavior of the extended system model 
[4,5]. The main drawbacks of this technique are the 
increased dimensionality of the model and time delay 
approximation  may lead to unstable system. 
On the other side, constrained linear quadratic control 
problem (LQP) have been solved using many 
techniques which are based on model predictive 
control (MPC) [6-8], and anti-windup class of 
approaches [9,10]. 
Recently, a new approach has been developed to solve 
continues time constrained linear optimization 
problem [11,12]. This approach has been extended to 
discrete time constrained linear quadratic problem 
[13,14], as well as constrained LQP with time delays 
[15-17]. 
In this paper, we consider the interconnected 
dynamical system of water quality control in streams 
with time delays and system constraints. Due to the 
feature of this problem, it is natural to think about 
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distributed controller rather than centralized one. 
Therefore, a partially closed loop distributed controller 
is developed to solve this problem. The closed loop 
part of the controller is decentralized and can maintain 
system stability under structural perturbations between 
the local controllers. On the other hand, the open loop 
part guarantees the global optimal performance of the 
system as well as the satisfaction of system 
constraints. The developed approach is used to control 
the concentrations of the biochemical oxygen demand 
(BOD) and the dissolved oxygen (DO) in a five reach 
river system. 
The rest of the paper is divided into the following. 
Section 2 is devoted to problem  formulation. The 
developed partially closed loop distributed controller 
is presented in Section 3, whilst the proposed 
algorithm is demonstrated in Section 4. In Section 5, 
the BOD-DO control problem of a five reach river 
system is formulated and solved. Finally, the paper is 
concluded in Section 6. 
 
2   Problem Formulation 
Consider the following linear time invariant 
interconnected dynamical system S, with time delays 
and constraints on the states and control: 
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where nRx∈  is the state vector, mRu∈  is the control 
vector, qandp are the delays on the state and input 
vectors, nn

p RA ×∈ ; { }θ,....,1,0∈p  and mn
q RB ×∈  ; 

{ }γ,....,1,0∈q are the system matrices, γθ and are 
known positive integers representing the number of 
delays in the state and input vectors respectively, ,x x , 

u , u  are the lower and upper bounds of the state and 
control vectors (component by component). 
It will be assumed in the rest of the paper that: 
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Associated with the above system S, a performance 
index J to be minimized with respect to x, u, of the 
form: 
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where nnRQ ×∈> 0 , mmRR ×∈> 0  are  block  diagonal   

weighting matrices, to and tf  are, respectively, the 
initial and final times which are assumed to be known. 
The above system can be described as N-
interconnected dynamical subsystems, S1, S2, …, SN, 
the ith of which is given by: 
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are the state and control variables of the ith subsystem; 
ii

ii

nn
p RA ×∈ , },...,1,0{ θ∈p , ii

ii

mn
q RB ×∈ , 

},...,1,0{ γ∈q are the block diagonal parts of the ith 
subsystem matrices, 

ijpA ; },...,1,0{ θ∈p , 
ijqB , 

},...,1,0{ γ∈q are the off-diagonal blocks of the ith 
subsystem with appropriate dimensions. 
Associated with each subsystem Si , the corresponding 
performance index Ji, given by: 
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where ii nn
i RQ ×∈> 0 , ii mm

i RR ×∈> 0 are the 
subsystem weighting matrices which are related to the 
original ones by the following: 
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In (5), the third and fifth terms in the R.H.S. include 
the coupling with the other subsystems through the 
state and control trajectories )(),( qjpj tutx ττ −−  for  

},..,1,1,..,1,0{ Niij +−∈ , },...,1,0{ θ∈p , 
},...,1,0{ γ∈q , whilst the forth and sixth terms 

include the delayed state and control vectors of the ith 
subsystem. 
Using a procedure similar to that given in [11,12 ], the 
above optimization problem (5)-(8) can be 
reformulated as follows: 
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21 iii QQQ += , ii nn

i RQ ×∈> 0
3

, 

, {1,2,.., }jno
jx R j Nε∈ are  coordinating vectors to be 

used to decouple the subsystems,  satisfy state 
constraints and handle time delay variables, whilst 

, {1,2,.., }jmo
ju R j Nε∈ are another introduced 

coordinating vectors  to decouple the subsystems and 

deal with time delay variables, 
2
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R

o
ii uu − are convexifying terms which may be 

added to speed up the convergence rate of the 
algorithm. 
Remarks: 
1. At the end of convergence, i.e. xxo →  and 

uuo → , the convexifying terms will not contribute 
to the value of the cost function. 

2. In cases where 0≥iQ , it is necessary to add the 

term 
2

3iQ

o
ii xx − to avoid matrix singularity as will 

be shown in the next section. 
 
3   The Distributed Controller: 
To do that, let us write the Hamiltonian of the 
interconnected system: 
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 Relaxing system constraints for the moment, the 
necessary conditions of the optimality lead to: 
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where ν is the iteration number, ν
ig can be specified 

according to the selected algorithm (steepest descent, 
conjugate gradient,…etc), νγ i  has to be positive to 

insure maximization w.r.t. the dual variable iπ . 
From the developed necessary conditions of 
optimality, one can notice that: 
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By substituting from (17) into (18), replacing iλ  by 
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that Tt f >> , where T is the settling time of the 
system, we get the following decentralized algebraic 
Riccati  equation to be solved for each subsystem: 
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The first term in the RHS of (27) gives the closed loop 
decentralized component of the distributed controller 
whilst the remaining terms gives the open loop part 
which will be used to satisfy system constraints. Now 
by activating input constraints and after imbedding 
(27) into (7), we get the following equivalent 
expression for (7) : 
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Follow [11,12,14,18], the control signal which 
minimizes the Hamiltonian and satisfies (7) or 
equivalently  (28) is given by: 
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equations (22), it can be treated in a similar way as the 
control signal. Therefore, o

ix is calculated as follows: 
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Remarks: 
1. The closed loop part of the controller is calculated 

based on completely decentralized information. 
2. The calculation of the open loop part of the 

controller, the coordinating vector ox and the 
Lagrange multiplier associated with the decoupling 
vector ou , necessitates the transfer of the 
information concerning sxx o ,,  between the 
subsystems. However, the necessary calculations 
are performed in a completely decentralized 
framework. 

 
4   The Algorithm: 
Based on the above necessary conditions of optimality, 
the following algorithm is proposed: 
Closed loop controller: Calculate Ki for i=1,2,..,N 
using (25), hence the closed loop system matrix 
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−+− for each subsystem. 

Open loop component:  
Initialization: Initialize the vectors ,,,, νννπ i
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Step(1): If υ=1, go to step (4) 
 Else: calculate the error: 
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 If: error < ε, where ε is a pre-specified small 
constant, record the trajectories and exit. 
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Step(4): Calculate v
ix by forward integration of (18) 

with 
iooi xtx =)( after replacing ui by (27) while 

setting the second term  equals to )(tvv
i , then go to 

step (1). 
Having developed the decentralized controller for 
linear interconnected dynamical system with time 
delays and constraints, it will be used to solve the 
water quality control problem in streams.  
 
5 BOD-DO Water Quality Control Model 
The  biochemical  oxygen  demand   (BOD)   and   the 
dissolved oxygen (DO) water quality control model in 
streams can be described by the following differential 
equation [18]: 
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where z, q, are respectively the concentration of BOD 
(mg/l), and DO (mg/l), k1 is the rate of decay of BOD, 
k3 is the rate of loss of BOD due to settling, qs is the 
concentration of DO at saturation level, k2 is the re-
aerations rate, (k4/Axdx) is the removal of DO due to 
bottom sludge requirement. 
Defining a reach of a river as a section of the water 
body receiving one major controlled effluent to be 
discharged from a sewage or industrial water treatment 
facility. Assuming that perfect mixing takes place in 
each  reach. Let QEi be the flow rate of effluent in the 
ith reach, Qi is the stream flow rate, Vi is the water 
volume in the ith reach, ui is the concentration of BOD 
in effluent to be discharged in the ith reach, yi ,yi-1 are 
the vectors of concentration of the water quality 
constituents in the ith and (i-1)th reaches and yi-1 affects 
the ith reach through a distributed delay model [19]. 
Therefore, the model describing the concentration of 
BOD and DO in the ith reach is given by:  
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where j is the number of delays. 
Under steady state conditions, the BOD concentration 
in the effluent to be discharged in the ith reach is 
treated to a desired level *

iu which maintains the 
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concentration of BOD and DO in the water body at the 
desired values *

iz , .*
iq  When abnormal conditions take 

place, what is required from the river system is to 
maintain pollution levels within reasonable values as 
close as possible to the desired levels and at the same 
time guarantee that these levels do not exceed pre-
specified upper limits to satisfy both community needs 
and the ecological balance in the river system. On the 
other hand, the effluent to be discharged from a 
sewage treatment facilities can be controlled either by 
discharging constant flow rate while using some 
variable treatment of sewage effluent, or by 
maintaining fixed level of treatment while controlling 
effluent flow rate. Choosing the first control 
methodology, lower bounds of the concentration of 
BOD in the effluent discharge has to be specified, 
otherwise the cost of effluent treatment will be very 
high. Therefore, the optimization problem associated 
with a river system can be described as follows: 
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where N is the number of reaches. 
Let ,,, ***

iiiiii uuuyyxyyx −=∆−=−=  
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iii uuu −=∆ *

i i iu u u∆ = − then the above 
optimization problem can be written in the form 
described by (10)-(15) in which the state and control 
variables represent the deviation from steady state 
values.  
  
6   Simulation Results 
For simulation purposes, a five reach river system is 
considered. Typical data for this system is as follows: 
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The above system is decomposed into five subsystems. 
For each one, the closed loop part of the controller is 
firstly calculated. Then the developed algorithm is 
implemented to calculate the open loop part of the 
controller. For illustration purposes, it is assumed that 
the system is at steady state. Then an impulsive  
disturbance took place in the first reach which can be 

represented by the following initial conditions, 
indicating the deviation from steady state values of the 
system:    
x(0)=[6.0  -2.0  0  0  0  0  0  0  0  0]    
As a result, pollutants will propagate along the 
different reaches of the river, and consequently, will 
disturb the equilibrium balance of the system. The 
control strategy, and hence, the deviation of the 
constituents concentration from their steady state 
values which optimize the cost function under no 
constraints are shown in Figs.1-3.  
Now, it is assumed that the system has the following 
set of constraints which must not be violated in order 
to satisfy what is required from the river system:             

}5,..,2,1{0.6,1.0,3.0,0.1 753 εiuxxx i ∀−≥∆≤≤≤
Figs.4-6 show the optimal solution obtained for this 
case which also satisfied imposed system constraints. 
  
 
7   Conclusion 
In this paper, water quality control in streams with 
time-delays and system constraints is studied. A 
distributed control structure is developed to solve the 
problem. The proposed controller consists of two 
parts; the closed loop part and the open loop one. 
Under normal operating conditions, the two parts of 
the controller insure optimal system performance and 
the satisfaction of system constraints. Through the 
proper choice of he weighting matrices Q1, Q3, the 
closed loop component of the controller can insure 
system reliability under any disturbances which may 
take place in the communication network. All 
necessary calculations can be done in a completely 
decentralized framework which allows parallel 
processing through computer networks, and hence a 
great saving in execution time. Simulation results 
show the applicability of the proposed technique to 
solve geographically distributed water quality control 
problems.  
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        Figure (2) : DO changes with no constraints 
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           Figure (3) : control changes with no constraints 

 
      Figure (4) : BOD changes with constraints 

 
        Figure (5) : DO changes with constraints 

 
Figure (6) : control changes with constraints 
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