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Abstract: - A new approach based on an artificial neural network (ANN) model to forecasting flood inflow, is 
presented in this paper. This model contained one input, two hidden and one output layers. The hidden layers 
consisted of 72 neurons in first layer and 39 neurons in the other. The rainfall data of typhoons collected by 
ombrometer stations in the river basin is taken as the input data, and the flood inflow is the output data. Optimal 
weights of ANN are determined after training by the algorithm of Back-Propagation-Network (BPN) to build a 
model of the rainfall-runoff system. The major advantage of the ANN is that for system identification, which can 
be utilized for constructing a “black-box” model of the system, no particular knowledge on the physical 
properties of the system itself is required. In this article, after training no lagged inflows are needed, and the 
flood inflow can easily be estimated by the ANN model. As an example, results on forecasting the typhoon flood 
inflow of Shihmen reservoir in Taiwan are presented. Consequently, satisfactory results of evaluation between 
observed and forecasted flood inflows by using the proposed method will be shown. 
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1   Introduction 

The main functions of a reservoir are not only to 
maintain stable supplies, but also to protect 
downstream from the danger of flood. However, 
there may be 3~4 typhoons invading Taiwan each 
year. The most difficult task of reservoir operation is 
forecasting the inflow in order to preventing failure 
of the reservoir. In Taiwan, since rivers flow rapidly 
due to their special topography, the inflow of 
reservoir is hard to estimate. Thus accurate inflow 
forecasting is quite important for on-line reservoir 
operation during typhoon periods. In the past, 
physical models were established to forecast inflows 
of reservoirs. However, there are numbers of physical 
factors that are too complex to model directly could 
influence the inflows. 

Artificial Neural Network (ANN) has been 
developed for about 60 years, since the concept was 
first introduced by McCulloch and Pitts in 1943[11]. 
But, it was mostly dormant until the mid 1980s. The 
utilization of ANN grew rapidly and became very 
popular in recent years. ANN of nowadays is much 
more sophisticated than before and widely use in 
various scientific fields. ANN can be trained by the 
historical data and adjusted weights automatically. 
Since ANN has the property of adapting itself to 

system, it seems suitable to use ANN in handling 
nonlinear system such as inflows forecasting. In this 
paper, an ANN model was developed to simulate the 
property of Shihmen basin as a practical case, and 
establish a “rainfall-runoff” system that could offer 
forecasting information for reservoir operation 
during typhoons. 
Applying ANN to civil and hydraulic engineering 
becomes more and more common. French et al. 
(1992) forecasted rainfall intensity of the next hour 
using back- propagation network (BPN)[4]. 
Hjelmfelt et al. (1993) applied ANN to simulate unit 
hydrograph, and the weighting matrix was taken as a 
unit hydrograph after training by ANN[8]. Halff et al. 
(1993) simulated a “rainfall-runoff” relationship by 
ANN[7]. Lorrai et al. (1995) also developed a 
“rainfall-runoff” model by BPN with 2 hidden 
layers[10]. Chang et al. (1998) combined CPN and 
fuzzy rule base to forecast inflows[1]. Chang and 
Chen (2001) developed a counter-propagation 
fuzzy-neural network model to approach the real time 
stream flow estimation[2]. Also, Chang et al. (2003) 
presents a new Radial Basin Function Neural 
Network (RBFNN) for water-stage forecasting in an 
estuary under high flood and tidal effects[3].  
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No matter what kind of neural network model, the 
inflows of past hours are needed as input data while 
the model is forecasting. In this article, no lagged 
inflows are needed after training; the model can 
simply estimate the flood inflow with rainfall data. 
 
 
2   Artificial neural network model 
2.1   Forward ANN 

The structure of an artificial neuron is shown as 

Fig. 1. The variables ni xxxx ,,,,, 21 KK  are the 
inputs to the threshold element and the variables 

ni wwww ,,,,, 21 KK  are the weights associated with 
the inputs. When wi is positive, input xi acts as an 
excitatory signal for the element. When wi is negative, 
input xi acts as an inhibitory signal for the element. 
The certain value of the threshold, the sum of the 
product of the inputs and their relative weights, 
decides the sensitivity of the ANN. If the summation 
is greater than the threshold value, an output is 
computed using a function f. The signal output y is 
expressed in a mathematic form as: 
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The sigmoid function (f), a nonlinear function 

with values between 0 and 1, was used in this paper. 
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The process above is how the ANN work or 
called the forward ANN pass. 
 
2.2   Back-propagation network (BPN) 

Rumelhart et al (1986) initially presented Back 
Propagation-algorithm Network (BPN)[12] hoping to 
minimize the cost function as soon as possible by 
gradient descent method. Generally, the type of BPN 
constitutes three or four layers -- an input layer, an 
output layer, and one or two hidden layers. Since 
multiplayer neural network reflects nonlinear 
characteristics, it has been used successfully to solve 
some complicated or diverse nonlinear problems. 
The BPN algorithm is summarized as follows: 

The operation of BPN composes of two passes: a 
forward pass and a backward pass. All of the weights 
are fixed in the forward pass, but they are adjustable 
in the backward pass. Training a neural network in 
the backward pass achieves optimization most 

effectively by adjusting the weights and thresholds 
which control the cost function, and the cost function 
is defined as below: 

∑ −=
k

kk YYE 2* )(
2
1

                                               (3) 
where E is expectation; *

kY  is the output value. 
According to Delta Rule, we have 
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where s is order of the layer. 
When s is output layer, it becomes 
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When s is hidden layer, it becomes 
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where η is a small positive constant called the 

learning rate. 
In order to minimize the error, we should adjust 

all the weights and thresholds in the opposite 
direction using the gradient method during training. 

The forward passes or backward passes proceeds 
layer by layer, and they are repeated until the error of 
output is acceptable. 
 
 
3   On inflow forecasting 
3.1   Data selection 

The situation of Shihmen reservoir in Tao-Yuan, 
Taiwan is shown in Fig. 2. The main functions of 
Shihmen reservoir are water supply, irrigation, 
hydraulic power generation, flood control and 
recreation. Since constructed in June 1964, it 
conduces both to water resource operation and 
economics improvement significantly in northern 
Taiwan. 

The input and output data for the training process 
of the ANN model consist of upstream rainfall and 
reservoir inflow data in 12 typhoon events 
respectively. They are HOLLY (1984), NELSON 
(1985), ABBY (1986), SARAH (1989), YANCY 
(1990), ABE (1990), DOT (1990), POLLY(1992), 
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DOUG (1994), FRED (1994), SETH (1994), HERB 
(1996). All data are offered by the related 
government organizations in Taiwan, North Water 
Resource Bureau of Water Resources Agency 
Ministry of Economic Affairs. 

The rainfall data was collected by 10 upstream 
ombrometer stations located in watershed of 
Shihmen reservoir as shown in Fig. 3. The locations 
of these stations are all selected by experts. The 
inflow data are taken from the stations on the inlet of 
Shihmen reservoir. The data are transmitted through 
simultaneous wireless system to control center, and 
those unreasonable data are sieved or picked out. 
 
3.2   The input patterns 

The input patterns include rainfall data of 10 
stations, and each neuron denotes a rainfall station 
with 72 hours lagged data (Fig. 3). 

In rainfall-runoff model in previous researches, 
the runoff and rainfall several hours ahead were taken 
as input data, and it could not only save on input data, 
but also converge faster during training. It seems 
reasonable to consider the lagged runoffs as input 
data; however, the lagged runoffs sometimes may not 
be available so that we have to establish a 
“rainfall-runoff” model in this paper. Then, 
estimating inflows without lagged data becomes a 
main issue. Therefore, some experiential formulas 
were used in this paper. 

The rule of thumb help us to understand the 
duration of water-concentration in the study 
catchments: It takes about ten hours for concentration 
from watershed, and more than thirty hours for the 
peak flow to reach the reservoir. Since the whole 
water-concentrating period may last decades of hours, 
rainfall data of past 72 hours are considered to 
simulate the ANN model. 
 
3.3   The training phase 

The data of twelve typhoon events are divided 
into two parts -- four and eight events: the former are 
training patterns; the latter are verifying patterns. The 
two breaking conditions while training: If the value 
of error equal to 0.0001 or less, or the system had 
already been trained for 1200 times, then the training 
process will be stopped. For faster converging to the 
optimal results, the learning rate is changeable in 
training process. The initial learning rate is 0.95 
under 900 times of training; 0.35, over 900 times. 
Moreover, ANN model should be retrained if it is 
stopped due to a wrong training before 1200 times. 
 
3.4   ANN architecture 
Input layer: 

Past 72 hours rainfall data is taken as inputs; the 
“rainfall-runoff” model is simulated with these inputs. 
There are total 720 neurons in the input layer. 
Hidden layer: 

Two hidden layers, with 72 neurons in one layer 
and 39 in another, are established. Two hidden layers 
are used here in order to represent the complicated 
characteristics of basin. The 72 nodes of the first 
hidden layer denote rainfall data over 72 hours. In 
other words, each node is the mean of 10 rain-gauges 
in one hour. Actually, the first hidden layer is 
prearrangement of neural networks, and the second 
hidden layer is real hidden layer of neural networks. 
The nodes interwork with each other only in the 
second hidden layer. 
Output layer: 

There are 7 neurons in this layer, which contains 

tQ ， 1+tQ
，…， 6+tQ , where tQ  is discharges at time 

of t and 1+tQ  is discharges at time of t+1, and so forth. 

Thus, 6+tQ  is discharges at time of t+6. For better 
estimations, we also set up connections between 

these contiguous 7 neurons. Thus, 1+tQ  can be 

estimated based on tQ . 
 
3.5   Evaluation Criteria 

The performances of ANN model are evaluated 
and compared by the four evaluation criteria below: 
1. Coefficient of Efficiency (CE): 
2. Volume Error (VOER): 
3. Peak Flow Error (PER) : 
4. Time of Peak Flow Error (TPER) : 

Positive VOER (Volume Error) denotes the 
excess forecasting volume; positive PER (Peak Flow 
Error) means an excess of peak flow, and positive 
TPER (Time of Peak Flow Error) means delayed 
peak time. Negative values denote the opposite 
meaning. CE (Coefficient of Efficiency) values are 
small or close to 1 means the model forecast well. 
 
 
4   Results 

The results are split into three sections: the 
training, evaluation, and the verifying sections, 
respectively. 

The training patterns include four typhoon events, 
while the verifying patterns include eight typhoon 
events. The training patterns are used for modifying 
and modeling the system in this phase. A great 
number of hourly data of the training events are input, 
and the ANN system will be developed. Fig.4 
displays 12 surges totally; the first 4 surges, Holly, 
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Nelson, Abby, and Sarah, denote the results of 
training typhoon events, while the next 8 surges 
denote the results of verifying typhoon events. The 
figure shows the accuracy of training patterns is 
satisfactory. 

In evaluation, Table 1 demonstrates summary of 
evaluations of the 4 typhoon events. Obviously, they 
all have nice performance in terms of CE, VER, and 
PER, especially Sarah. Abby is the only typhoon that 
has just an hour of TPER. 

Since the model was trained well, the rainfall data 
of the verifying events could be used for simulating 
inflows during verifying phase. The verifying 
typhoon events are Yancy, Abe, Dot, Doug, Fred, 
Seth, and Herb. The results and evaluations of these 
12 events are shown as Fig.4 and Table 2, 
respectively. In Fig. 4, the later 12 surges are the 
results of verifying events. They are very satisfactory 
and accurate; in particular, the notorious Herb, the 
most disastrous typhoon of all, has acceptable 
performance as well. These verifying results show 
that the ANN excellently forecasts the inflows of 
reservoir. 

For further study, the ANN model was also 
applied to predict the inflows. When the system starts 
to predict, there is only one output neuron, the 
inflows at t, denoted Qt. On the other hand, there are 6 
neurons set up as output terms in predicting phase. 
The 6 predictions are the inflows at t+1, t+2… t+6, 
denoted Qt+1, Qt+2 …Qt+6, respectively. The 
predictions at t+1, t+3, and t+6 are plotted in Fig. 5 to 
Fig. 7, and the evaluation at t+3 is listed in Table 3. 
The performances in predictions are not as marvelous 
as the training results, but they are good enough as 
the verifying results. 
 
 
5   Conclusion 

Hydraulic problems are very complicated, and it 
is difficult to simulate. In this study, artificial neural 
networks can be applied to solve tough and nonlinear 
hydrology problems. The ANN model simulated 
typhoon events well, and provides satisfactory 
predictions. 

Without last inflows data, ANN forecasts the 
inflows very well and presents a pure 
“rainfall-runoff” model. This is the principal 
advantage that the pre-existing study may be lack of. 
The connections, another advantage of this ANN 
model, provide the communications of forecasting 
information between an output neuron and next one. 
Benefit by the connections, it can forecast inflows 
several hours later and make up the rainfall data 

required. ANN also has an excellent performance in 
big events like typhoon Herb. 

Taiwan is a hilly island. According to the 
historical climatic data, the river flows in Taiwan 
change a lot during flood period and non-flood period. 
Although the flood period is short, the flows volume 
is high; comparatively, the base flows only remain in 
the river during non-flood period. That is to say, this 
is a kind of flashy basin, and the results of the model 
may relate to this type of basin. 

This model is trained by over 2500 rainfall data 
from Shihmen watershed, and the ANN model 
exhibits good outcomes in forecasting flood inflows. 
It may not be appropriate for other type of basins; 
however, we provide a procedure how ANN 
simulated nonlinear hydrology problems successfully. 
In fact, this simulation can be applied to other types 
of basins only if the nodes of neural network are 
modified by retraining plentiful data. It is 
recommended that the way it is trained can be 
repeated in the future. 

 

Fig. 1 An artificial neuron 

 

 
Fig. 2 Watershed of Shihmen 

reservoir 
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Fig. 3 Structure of network 

 

 
Fig. 4 Results of ANN 

 

 
Fig. 5 Results of ANN at t+1 

 

 
Fig. 6 Results of ANN at t+3 

 

 
Fig. 7 Results of ANN at t+6 

 

 

Table 1 Summary of evaluations of 

the training events 

Output at t CE VER PER TPER

Holly 0.987027 -0.081685 -0.038716 0 

Nelson 0.998334 -0.024708 -0.022029 0 

Abby 0.992432 0.009325 -0.108816 1 

Sarah 0.99741 -0.000831 -0.006968 0 
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Table 2 Summary of evaluations of 
the verifying events 

Output at t CE VER PER TPER

Yancy 0.95788 0.132614 -0.126072 -2 

Abe 0.932645 -0.163006 -0.149399 3 

Dot 0.566634 -0.416272 -0.320226 0 

Polly 0.919052 0.119962 -0.002607 0 

Doug 0.917539 -0.088812 0.0466538 1 

Fred 0.91302 -0.177201 -0.129656 -1 

Seth 0.957526 0.134781 0.1729701 0 

Herb 0.972328 -0.045213 -0.085844 2 

 
Table 3 Summary of the result of the 

verifying patterns at t+3 

Output at t+3 CE VER PER TPER

Yancy 0.9261 0.12405 -0.027797 1 

Abe 0.95802 -0.0851 -0.004953 3 

Dot 0.56862 -0.416 -0.396014 2 

Polly 0.88871 0.08237 0.2599263 0 

Doug 0.87667 0.000048 0.1703163 4 

Fred 0.92954 -0.1392 -0.071766 -1 

Seth 0.91528 0.17125 0.1938728 1 

Herb 0.92534 -0.1085 -0.157996 2 
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