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Abstract: - In the present paper, a statistical analysis of the experimental results of the hydrostatic force versus 
water depth is provided. The experiments were executed on a model setup in the Laboratory of Hydraulics in 
the Department of Civil Engineering of the Technical Educational Institute of Serres, Greece. The results of a 
total of 79 identical experiments are presented. Each experiment has concluded in a certain linear relation 
between depth and force. A statistical analysis was carried out, testing the hypothesis that the residuals of the 
experimental values from the respective theoretical parameter values are normally distributed. This hypothesis 
was found to be true at a level of significance of 0.1, leading to the conclusion that only random errors have 
occurred, thus excluding the systematic ones.  
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1  Introduction 
Errors and uncertainties are present in every 
experimental observation. Knowing the precision 
of the measurement device and technique with 
which we measure a physical quantity is essential 
for the importance we can attribute to the results. 
For the analysis of measurements of hydrostatic 
forces, a lot of works exist in the literature (ex. [1, 
2, 3].  
The purpose of the present paper is to examine a 
large number of experiments on hydrostatic forces 
and to test the hypothesis that no systematic errors 
occurred during these series of measurements. 
In section 2 we present the experimental device 
used, and in section 3 its mathematical modeling. 
Section 4 gives the statistical analysis of the 
parameters and section 5 the hypothesis testing.  
 
 
2  The experimental device 
We present here a statistical analysis of results of 
experiments carried out in the Hydraulics 
Laboratory of the Department of Civil Engineering 
of the Technical Educational Institute of Serres, in 
the North of Greece. A total of 79 experiments 
were carried out in total. In each experiment N 
couples of the values of the water depth and the 
resulting hydrostatic force on a plane.  

The purpose of each experiment is to determine the 
best values of the parameters α0 and α1, 
corresponding to the relation: 
  

exp 0 1iF − iy= α + α ⋅       (1) 
 
where Fexp-i is the experimental value of the 
hydrostatic force and yi the water depth. In this 
way, the equation of the simulation of the apparatus 
is extracted, with the least squares method.  
The statistical analysis that follows, provides 
further data processing of the distribution functions 
of α0 and α1 as well as of the relative error between 
the theoretical values Fth-i and the improved 
experimental values Fexp-i΄ which are given by 
theory and eq. 1 respectively, as well as the check 
of statistical hypotheses on the kind of the errors of 
the measurements.  
The Armfield F1-12 was used as experimental 
device, which measures the hydrostatic force 
exerted on a rectangular plane surface. This plane 
surface is one side of a torroid shaped body, 
partially immersed in water and supported at a 
pivot point (Fig. 1). This device thus includes [4]:  
• An 7 liter open rectangular reservoir (Perspex).  
• A torroid-shaped body, whose shape can be 

described as a rectangle which revolves for 90 
degrees around an axis outside it. 
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• A metallic horizontal axis where the above-
mentioned body is attached and which can 
revolve.  

• A system of hanging weights on the end of the 
metallic axis. These weights balance the 
hydrostatic force. 

• Systems to ensure that the bottom of the reservoir 
is horizontal and the axis parallel to the bottom.  

As will be described later, the balance of two 
torques that come from the weights and the 
hydrostatic force respectively, results on the 
determination of the latter in function with the 
water depth.  
This device operates in two different water profiles: 
deep (160 mm > yi > 100mm) and swallow (yi < 
100mm). The deep profile was exclusively used in 
the experiments of the present paper. In each 
experiment, 20 pairs of values were measured (yi – 
water depth in mm, mi – weight mass in gr), 
covering the whole depth range.  
The experiment advances by increasing gradually 
the water depth and measuring the mass necessary 
to counterbalance the momentum of the hydrostatic 
force. 
 

 
Fig. 1. The Armfield hydrostatic force experimental 

device.  
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Fig. 2. The schematic representation of the device. 

 
When water depth is increased, the following three 
forces are applied on the body:  
a. Two forces on the side surfaces of the body, 

which are counterbalanced. They are not 
indicated in fig. 2. 

b. Two forces on the convex and concave surfaces, 
which pass from the rotation axis and thus, they 
do not create any torques on the horizontal axis 
(black arrows in fig. 2). 

c. A force that is applied on the vertical area A and 
that provokes a torque. The theoretical value of 
this force in function of the depth is:  

 

2th i i

d
F g A y− = ρ ⋅ ⋅ ⋅ −⎛

⎜
⎝ ⎠

⎞
⎟      (2) 

 
ρ the fluid’s density, g the acceleration of gravity, 
Α =b.d the area of the surface the force is applied 
to.   
 
 
3  The mathematical model 
The experimental values of the hydrostatic force 
Fexp-i deviate from Fth-i (eq. 2) because of random 
errors and uncertainties during measuring. 
Systematic errors cannot exist, because the device 
is calibrated twice a year. On the other hand, the 
hypothesis that only random errors existed during 
our measurements is examined in the following 
(section 5).  
The experimental value Fexp-i results from the 
counterbalance of the torque of the hydrostatic 
force described earlier and the one of the weight of 
the hanged mass. The equation that gives this 
experimental force Fexp-i in function of the depth 
(yi) and the weight (mi) is:  
 

exp 2

2 12
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where (fig. 2) mi the mass of the hanged weights in 
kg, L = 0.275 m the length of the horizontal axis, α 
= 0.10 m the radius of the concave surface of the 
body.  
For the determination of the optimal straight line 
that represents each experiment’s data the least 
square method was used [5] to best fit the “cloud” 
of the points (yi, Fexp-i).  
By solving the system of normal equations:  
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one obtains the coefficients α0 and α1 of eq. 1. The 
theoretical values of these coefficients are:  
 
α0 = -3.67875 N   and  α1 =73.575 N/m (5) 

 
If then one substitutes in eq. 3 the depth values, one 
obtains the improved experimental values Fexp-i΄. 
These values can be correlated with the theoretical 
values Fth-i, in a way to find with a new application 
of the least square method, the linear relationship 
that relates them, considering Fth-i as independent 
variable and Fexp-i΄ as dependent variable (eq. 6) as 
well as the experimental error (eq. 7): 
  

/ / /
exp 0 1i thF F− −= α + α ⋅ i      (6) 

 

experimental error % = 
exp
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F

−

−
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  (7) 

 
In the statistical analysis that follows, we use the 
experimental results on coefficients αi and errors as 
data. We analyze statistically the values found for 
α0 και α1, the mean error of the measurements, and 
the parameters α0΄ και α1΄, which come out in the 
last phase of each experiment from the correlation 
of the improved experimental values with the 
theoretical ones. The expected values for these two 
last parameters are 0 and 1 respectively, since a 
parity of Fth-i with F΄exp-i, is expected. 
 

  
4  Statistical analysis 
The measurements with the device are influenced 
only by random errors, as previously explained, 
which can be quantified and analyzed statistically. 
Below (section 5) we examine through the results 
the statistical hypothesis that the residuals,  the 
deviations of the results from the respective 
theoretical values follow the normal distribution 
and are thus due only to random errors [6, 7].  
In table 1, the statistical values of the 79 
experiments are shown. Indicative histograms of 
values of coefficient α0 and of the error are shown 
in fig. 3 and 4. 
 

Table 1. Statistical values of the parameters. 
 a0 (N) a1 (N/m) a0' a1' 
Mean -3,793 73,869 -0,030 1,0058 
Error 0,0402 0,3123 0,0222 0,0050 
Standard 
deviation 0,3577 2,7756 0,1977 0,0445 
Variance  0,1279 7,7039 0,0390 0,0020 
Kyrtosis  1,0136 4,8511 3,6458 5,2528 
Skewness -0,6731 1,0407 -1,0450 1,7570 

 
The mean values for α0 and α1 (-3,79 N και 73,87 
N/m respectively) are very close to the theoretical 
values of these parameters (eq. 5). The mean values 
of α0΄ and α1΄ were found –0.0303 and 1.0057 

respectively, instead of the theoretical 0 and 1. The 
mean value of the mean experimental error 
(between theoretical and improved experimental 
values) is 3.26%, which is satisfactory. 
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Fig. 3. Histogram of the distribution of coefficient 

α0. 
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Fig. 4. Histogram of the distribution of values 

obtained for the error (eq. 7).  
 
In table 2 the confidence intervals of α0, α1, α0΄, α1΄ 
are shown, in various confidence levels. These 
confidence levels can serve as a reference for the 
realization of future experiments with the same 
device. 

 
Table 2. Confidence intervals of the parameters α0, 

α1, α0΄, α1΄. 
α0 (N) α1 (N/m) Conf. 

level from to from to 
95% -3,76 -3,60 73,2 74,5 
99% -3,78 -3,57 73,1 74,7 

99,73% -3,80 -3,56 72,9 74,8 
   

α0΄ (N) α1΄ (N/m) Conf. 
level from to from to 
95% -0,044 0,044 0,990 1,010 
99% -0,057 0,057 0,987 1,013 

99,73% -0,067 0,067 0,985 1,015 
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5  Hypothesis testing 
By normalizing the statistical data for the 
parameters α0 and α1, with their respective mean 
values and standard deviations, we obtain [8]:  
 

( )
( )

x i
z i

n

− µ
=

σ
      (8) 

 
where z(i) is the normalized value of α0 and α1, x(i) 
the value of parameters α0 and α1 of experiment i, µ 
the corresponding mean value of the parameters, σ 
their standard deviation and n the number of the 
experiments.  
These values can be compared with the respective 
curves of normal distribution [9]. This comparison 
is given in fig. 5, where for every normalized value 
of observations of α0 and α1, there is the respective 
theoretical value of the normal distribution. For 
every normalized experimental value z of 
parameters α0 and α1 we calculated the theoretical 
probability Pth for each measurement to be lower 
than z according to normal distribution [Pth(Z<z)], 
and the corresponding experimental probability 
Pexp(Z<z) [10, 7]. The theoretical value of the 
probability is given by: 

 
1

( ) (1 (
2 2

th
z

P Z z erf< = + ))     (9) 
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Fig. 5. The Kolmogorov-Smirnov goodness of fit 

test for the probability distribution of parameters α0 
and α1.  

 

Moreover, in fig. 5 the limits of the deviations 
(Pexp-Pth) for significance levels 5 και 10% are 
shown.  The agreement of the data with the 
theoretical curves is satisfied in both levels for the 
results of parameter α0, while for α1 only in the 10% 
level. It is obvious that this check would be 
satisfied for α0 in significance levels even lower 
than 5%. Considering the large number of 
experiments, these levels can be characterized as 
quite satisfactory. The differences between 
experimental and theoretical values of the 
probability are such that allow us to accept the 
hypothesis that errors are randomly distributed. 
  
 
6  Conclusion 
In the present paper we present the results of 79 
experiments on the relation of the hydrostatic force 
with depth. In every experiment, the values of the  
parameters of this linear relationship were 
determined. The mean values of the basic 
parameters were found very close to the theoretical 
ones and the mean error was 0.0326.  
The statistical hypothesis of the normal distribution 
of the deviations of the experimental parameter 
values from the theoretical ones was tested, in order 
to check whether systematic errors could exist. This 
hypothesis was accepted for a significance level of 
10% for the first parameter and much lower than 
5% for the second. 
The methodology followed can be applied to other 
experimental devices in our Laboratory, such as 
linear losses and local losses devices, Venturi 
devices and electromagnetic flow rate devices.  
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