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Abstract: -The orifice flow of scleroglucan solutions is studied. Under given conditions, this molecule behaves as 
a semi-rigid rod in solutions. Solutions in glucose-water syrups were examined, which show considerable vortex 
growth in orifice flow depending on flow regime and concentration. The vortex reattachment length is studied as 
a function of regime and concentration. The flow curves in orifice flow are characterized by a linear pressure 
drop – flow rate relation. The extensional viscosity is derived from the orifice flow data by the Binding analysis. 
Comparison with the Batchelor analysis for closely spaced fibers is satisfactory if molecular extension as well as 
alignment along the streamlines is considered. 
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1  Introduction 
Flexible polymer solutions have been quite 
thoroughly studied, as shown in a recent review 
paper by Larson [1] as well as in a paper by Prakash 
[2]. This is not the case for rigid polymer solutions 
which are much less elastic. They are expected to 
behave like suspensions of rigid slender particles. 
For the latter, constitutive equations are available in 
the dilute range by Hinch and Leal [3-5]. The range 
of semi-dilute systems has been examined by 
Batchelor [6] for extensional flows. Different 
extensions based on the micromechanics of 
ellipsoidal particles have been proposed by Dinh and 
Armstrong [7] and Lipscomb et al [8]. 
Many authors have been interested in the 
experimental flow properties of rigid slender particle 
solutions. Mewis and Metzner [9] studied solutions 
of glass fibers and verified the Batchelor analysis. 
Attention was given also to contraction flows of 
such systems. Binnington and Boger [10] showed 
constant vortex length. They thus stressed the point 
that for semi-rigid rod systems, extensional viscosity 
should be independent of the extensional rate.  
Lipscomb et al [8] developed a numerical model for 
the contraction flow under inertialless conditions. A 
key assumption in this model is that fibers align with 
streamlines. Numerical simulation results were 
compared to experiments with glass fibers 
suspended in a viscous syrup. Good agreement was 
observed for the flow field structure and the 
variation of the reduced vortex reattachment length 
X with the different parameters: It increases with 
fiber concentration for a given aspect ratio.  
Chiba et al [11] presented numerical results that 
agreed with those of Lipscomb et al [8], and 
extended them by considering the effect of inertia. 
Concentration was again shown to increase the 
vortex length and inertia to crush the vortices. It was 
also supposed that the length of the vortex is 
independent of the flow rate when fibers of polymer 

molecules do not change their configuration. 
Keiller et al [12] established the way vortex 
enhancement varies with concentration. Keiller and 
Hinch in their analysis [13], find that the vortices 
should decrease with concentration. They suggested 
that the vortices observed previously result from the 
contraction flow and not the flow singularity. 
Mongruel and Cloitre examined the orifice flow of 
semi-dilute solutions of polyamide fibers [14] as 
well as xanthan [15]. They showed [14] that the 
vortex length can reach one upstream diameter. In 
[15] they study in detail the pressure drop effect 
resulting in Trouton ratio values of up to 100. 
The above studies show that flow-induced 
orientation of slender rigid bodies may generate 
considerable extensional effects. In contraction flows 
this results in viscoelastic vortices that seem to be 
flow rate independent in the regimes examined. It 
should be expected that at lower flow regime 
conditions, where particle orientation should be 
random, contraction flow should resemble to that of 
a newtonian fluid, with concave corner vortices. The 
evolution from the newtonian corner vortices to the 
flow-rate-independent viscoelastic vortices and the 
effect of extensional properties on the excess 
pressure drop need further research. 
In the present paper, we present orifice flow 
experiments with solutions of scleroglucan. The 
objective is to study extensional effects generated in 
this geometry and to confront observations with 
predictions on the extensional viscosity from slender 
rigid body theories and orifice flow analysis. 
In the following section we describe the polymer, the 
fluids and their shear viscosity. In sec. 3 the 
determination of the concentration ranges is 
discussed. Sec. 4 treats the orifice flow of the 
solutions in non-inertial conditions. In sec. 5, the 
extensional viscosity is discussed, derived from the 
orifice flow data and independent model predictions. 
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2  The fluids and their shear viscosity 
The fluids were solutions of scleroglucan, a 
polysaccharide similar to xanthan and to 
schizophylan, provided by Elf Sanofi in powder 
form, with a reported molecular weight of 5.106. 
Nardin and Vincendon [16] have shown a that it has 
a triple helical structure. They have also shown that, 
when dissolved in DMSO, the molecule is dispersed 
to take up a single-chain random-coil conformation. 
Yanaki et al [17] found that its intrinsic viscosity is 
243 cm3g-1 in DMSO (flexible chain), but in 0.01N 
NaOH it obtains much higher values (6.6.103 cm3g-1) 
since it is rodlike. Yanaki and Norisuye [18] found 
in the latter solvent a contour length of h=0.3 nm, a 
diameter of trimmer rod of 2.5 nm and an [η0] of 
4.4.103cm3g-1. Noik and Lecourtier [19] found an 
[η0] of 9200cm3g-1 for aqueous solutions. 
The above-mentioned literature data indicate that in 
a solution, it can behave either as a rigid or as a 
flexible polymer, depending on the solvent. For a 
molecular weight close to ours, its intrinsic viscosity 
may vary from, 240cm3g-1 (as flexible) up to 
104cm3g-1 (as rigid).  
Glucose/water syrups were used here as solvents, in 
order to avoid high shear-thinning and inertia [20]. 
Solutions of concentrations of 100, 500 and 
5000ppm (w/w) were prepared in a solvent of 80/20 
glucose/water as well as a solution of 2000 ppm in a 
thicker syrup (90/10)(tab. 1).  
The shear viscosity of the solutions was measured by 
the CarriMed Controlled Stress Rheometer. A cone-
plate geometry has been used with a cone angle of 1° 
and a diameter of 6cm. All measurements (fig. 1) 
were carried out at 20°C. No shear-thinning was 
detected for the 100 ppm solution. Its constant shear 
viscosity is η=1.27 Pas. Slight shear-thinning can be 
observed for the 500 ppm solution. For >1 sγ -l it 
behaves as a power-law fluid. Its zero shear viscosity 
is 1.85 Pa.s. The 2000 and 5000 ppm solutions are 
more shear-thinning. As the content in glucose is 
higher in the 2000 ppm fluid, this later has a higher 
viscosity from the 5000 ppm one. Their zero-shear 
viscosities are 19.5 and 15.5 Pa.s respectively. 
The intrinsic viscosity is estimated to be: [η0] = 580 
cm3g-1, indicating an intermediate situation between 
rigid and flexible structures. Table 1 reports the 
shear data of the solutions, where ηsolv is the solvent 
viscosity, cv the volume concentration and λ the 
characteristic time evaluated as will be shown later 
on, to correspond to the rotational relaxation time. 
The coefficients k and m referred in the last two 
columns of the table, correspond to the power law: 

1m
s k −η = ⋅ γ    (1) 

Table 1. Shear data for the glucose syrup solutions.  
c 

(ppm) 
Gluc. 
(%) 

η0 

(Pas) 
ηsolv 

(Pas) 
cv 

(g/l) 
λ 

(sec) 
k of 
eq.1 

m of 
eq. 1 

100 80 1.3 1.2 0.136 0.032 1.3 0 
500 80 1.9 1.2 0.68 0.823 1.85 -0.03 

2000 90 19.5 5.0 3.0 101.6 13.68 -0.06 
5000 80 15.5 1.2 6.8 79.6 8.0 -0.17 
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Fig. 1. The steady shear viscosity. 
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Fig. 2. The reduced shear viscosity. 

 
 
3  Concentration ranges 
Doi and Edwards [21] classify the solutions of 
rodlike polymers into four concentration regimes. 
Denoting by L the length of the rods, b their 
diameter, cv the weight per volume concentration 
and n the number of polymers per unit volume: 

A
v

N
n c

M
= ⋅     (2) 

the classification of [21] is shown in table 2: 
 

Table 2. Concentration ranges [21]. 
dilute  Semi- 

dilute 
 Conce- 

ntrated 
 Liquid 

Crystal. 

Free 
rotation 

n 1
=

L-3
=6

.7
µm

-3

Severe 
restricti
on of 

rotation n 2
=

b-1
. L-

2 =
12

10
µm

-3

Excluded 
volume 

interactions 
important in 
both static 

and dynamic 
properties 

n*
>

n 2

Polymers 
aligned, 

anisotrop
ic liquid 

 
Regime transitions are smooth, so n1, n2 and n* are 
indicative values for progressive changes in the 
solution properties. For our polymer, the diameter is 
close to 3nm [18, 19]. From the calculated intrinsic 
viscosity we find L=0.53µm and L/b=180. 
The limits of the concentration ranges are then: 
n1=6.72µm-3 and n2=1210µm-3. For our lowest and 
highest concentration solutions, n is 16.4 and 
820µm-3 respectively, which indicates that the all our 
solutions are situated in the semi-dilute range. 
In the dilute range, the rotational relaxation time for 
dilute solutions is given by [21]: 
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where kB is the Boltzmann constant, Dr is the 
rotational diffusion constant and γ=0.8 a correction 
factor. For semi-dilute solutions, the rotational 
relaxation time is larger than in dilute solutions by a 
factor: 

( )23

0

r

r

n L⋅λ
=

βλ
    (4) 

where β is a correction factor of the order of 103. 
The relaxation time for each solution is shown in 
table 1. The adimensional shear viscosity was then 
plotted versus the reduced deformation rate (Fig. 2). 
The onset of shear-thinning occurs at , which 
is an indication that the obtained λ values 
characterize fluids’ properties.  

1λ ⋅ γ ≅

 
 
4  The orifice flow 
4.1  The flow curves 
Orifice flow experiments were performed in 
submerged and free jet configurations (upstream 
length 150mm, upstream and downstream diameters 
20mm), at temperatures between 20.3 and 21.5°C. 
 These configurations are described in detail in [20]. 
Two orifices of respective diameters 1.2 mm and 
0.53 mm were used. A conical channel was formed 
by the main flow region, as expected. No deviation 
from the slope 1 can be detected in the flow curves 
(Fig. 3), which is in very good accordance with 
similar experiments of Mongruel and Cloitre [15] as 
well as with Cartalos and Piau [22].  
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Fig. 3. The flow curves of the solutions. 
 

The flow curves were represented in a dimensionless 
way, by the use of the coefficient C΄: 

3
4

g g

N

P P
C

P
′ = =

π ⋅η ⋅ γ
   (5) 

which denotes the ratio of the pressure loss to that 
necessary to push through the orifice a newtonian 
fluid of the same viscosity. The deformation rate: 

3

3 18 vqm
m d
+

γ = ⋅ ⋅
π

   (6) 

has been shown to represent very well orifice flow 
data [20]. In the case of suspensions of slender rigid 
particles, particle alignment with flow should be 
considered for the calculation of η in eq. 5. In our 
case, molecules are submitted to an extensional field 
that is very efficient in orienting particles and so, 
η=ηs was taken in eq. 5. 
The value of C΄ increases with concentration, staying 
in the range 1-6, which is in good agreement with 
respective observations in [15].  
Two regimes of constant values of the coefficient C' 
can be distinguished (Fig. 4), for the 100ppm 
solution: an initial newtonian regime at low flow 
rates where C' is close to 1 and the flow field is like 
the one for a newtonian fluid, and a higher regime 
where C' is constant indicating a constant 
extensional viscosity from the Binding analysis [23] 
and the flow field is characterised by an elastic 
convex vortex. 
An intermediate regime exists between these two 
regimes where C' is increasing. During the first 
newtonian regime, molecules are uniformly oriented. 
During the intermediate transition regime they start 
to be oriented by the flow. The final higher regime 
finds them fully aligned. 
For the l00ppm solution deviation from the 
newtonian regime occurs at =3.5. The final 
regime is reached for =10. For more 
concentrated solutions, where >10, the final 
regime of constant C' is only observed. The 
difference observed between the two diameters for 
the 500ppm solution was due to the fact that the 
measurements at high regimes with the d=0.53mm 
orifice have been influenced by inertia as will be 
shown later on. 

λ ⋅ γ
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Fig. 4. Dimensionless representation of the flow 

curves. 
4.2  The vortex re-attachment length 
By visualizing the flow and taking pictures of it, 
measurements of the vortex reattachment length: 

v

u

L
D

Χ =      (7) 
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were carried out, where Lv is the length of the vortex 
and Du=20mm the upstream tube diameter. The 
evolution of the reduced re-attachment length of the 
vortex X is shown in Fig. 5. For the 100 ppm 
solution, X reaches a constant value X∞  at λ ⋅ = 3.5, 
close to the onset of the transition regime. As 
concentration is increased, the value of  where 

γ

λ ⋅ γ

X∞  is reached, increases. On the flow of the 500 
ppm solution, X is decreasing under the influence of 
inertia. The sudden increase of the vortex height 
seems to be triggered in the same λ ⋅  value for the 
two lowest concentration solutions. For the two 
highest concentration solutions, the vortex growth 
starts at higher  values. At the highest regimes 
examined, the vortex heights of the 2000 and 
5000ppm solutions tend to join each other. 

γ

λ ⋅ γ

The reattachment length of the 100ppm fluid passes 
from 0.17 (the value for newtonian flow) to 0.29 and 
it stabilizes at this value. The 500ppm fluid develops 
larger vortices and X stabilizes at 0.56. For the 
5000ppm fluid it covers the whole range from 0.2 to 
0.7. The essential difference between flexible and 
semi-rigid solutions is, thus, the rate of increase of 
the vortices: With the former ones there is a rapid 
transition from a newtonian cell size through to 
larger dimensions and ultimately to unstable 
rotational and pulsing cell movement. With the 
latter, vortex growth occurs in a more gradual way.  
Respectively, the angle α which is formed by the 
vortex and the direction of the flow in the entry 
region shows a monotonic decrease and attains a 
high regime asymptotic value . a∞
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Fig. 5. The reduced reattachment length and entry 

angle versus deformation rate. 
 
Constant X and α values indicate that the fluid 
material properties attain constant values in the 
whole part of the converging zone upstream of the 
orifice. In a suspension of fibers this should occur 
when fibers are completely aligned with the flow 
lines. Our results indicate that, for dilute solutions, 
complete alignment is achieved for  from 3 to 
50. For semi-dilute solutions, as concentration is 
increased, neighbouring fibers hinder alignment, so 
higher λ ⋅  values are needed. 

λ ⋅ γ

γ

As previously indicated, inertia crushes the vortices 
once it becomes important. Boger et al [24] compare 
experimental observations of the influence of the 
Reynolds number on X with predictions of Kim et al 
[25], which match very well: Slightly above Re=0.1 
vortices start to shrink, and above Re=1 this 
shrinkage becomes considerable. Chiba et al [9] 
predict a considerable decrease of X for Re>1. Our 
experiments included in general low Reynolds 
numbers (Re<1), with the exception of the 500ppm 
through the 0.53mm orifice. In this experiment (Fig. 
6) vortices start to diminish indeed at Re=0.3. 
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5  The extensional viscosity 
The orifice flow data were used to calculate the 
extensional viscosity of the scleroglucan solutions 
by the method of Binding [23]. According to this 
analysis, for a constant viscosity fluid and when the 
pressure drop-flow rate relation is linear, the 
extensional viscosity is constant. Furthermore, by 
replacing the shear viscosity η by ηs, following the 
arguments developed earlier in this paper, it gives: 

2
9

3 32
g

s s

P
Ε ⎛ ⎞η
= ⎜ ⎟η η ⋅ γ⎝ ⎠

   (8) 

The left member of (8) is the Trouton ratio. On the 
other hand, the analysis of Batchelor for non-dilute 
suspensions predicts the extensional viscosity as a 
function of the shear viscosity of the solvent ηs, the 
length of the expanded chain L, its equivalent 
diameter b and the volume concentration Φ=n.v, 
where v is the volume of a single particle. This 
analysis ends up with a Trouton ratio: 

3

1
3 9logs

L nΕη π ⋅
= +

πη ⎛ ⎞
⎜ ⎟Φ⎝ ⎠

   (9) 

It is valid if the solutions concentration is such that: 

b<< ( )
1
2n L −Η = ⋅   <<L    (10) 

where H is the average distance between the rods in 
the plane normal to the chain axes.  
If the value of L=0.53µm derived under static 
conditions is used for the estimation of the Trouton 
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ratio, then the Batchelor analysis gives much lower 
results for the Trouton ratio than the Binding 
analysis. Since molecular flexibility is increased by 
the solvent used, molecular extension should be 
taken into account. Thus the value of L=1.2µm, 
(comparable to the values reported in [17] and [19]), 
corresponding to an extension of about 2.2 was  used 
for this purpose. With this value, the agreement 
between the Batchelor and the Binding analyses is 
considerably improved. The values of the Trouton 
ratio differ by less than 20% for c 500ppm (tab. 3).  ≥
 

Table 3. Comparison of the extensional viscosities 
from the Batchelor and Binding analyses. 

c 
(ppm) 

Trouton ratio 
 Tr=ηΕ/3η  

(Binding analysis) 

Trouton ratio  
Tr=ηΕ/3η  

(Batchelor analysis) 
100 3.13 1.91 
500 7.63 6.86 

2000 21.8 26.2 
5000 59.8 72.3 

 
Comparable Trouton ratios were found by Khagram 
et al [26] and Fuller et al [27] for high molecular 
weight xanthan gum solutions. 
A further point in the analysis of Binding can be 
examined through the values obtained for α.  
According to this analysis, 

1
2

2
3

E

s

dRtg
dz

−

∞⎛ ⎞η⎛ ⎞α = − = ⎜ ⎟⎜ ⎟ η⎝ ⎠ ⎝ ⎠
  (11) 

The evolution of tgα with Tr is shown in fig. 7. The 
scaling law is close to –1/2, the theoretical 
prediction, which shows coherence of our results 
with the analysis of Binding.  
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Fig. 7. The entry angle versus Trouton ratio. 

 
6  Conclusions  
Experiments on scleroglucan solutions are presented 
in this paper. In order to avoid inertia during orifice 
flow, a glucose-syrup was used as a solvent. The 
shear viscosity of these solutions was first measured. 
The solutions were found to cover the transition 
between the dilute and the semi-dilute regimes. 
Orifice flow experiments have been performed with 
these solutions. Scalings of the flow curves and 
evolution of the flow structure is shown to depend 

on flow regime and concentration. At low flow 
regimes where flow strength cannot orient the 
molecules, solution behaviour is newtonian. 
Deviation from newtonian behaviour is characterized 
by a typical Peclet number, the product of the time λ 
characterising rotational diffusion and the average 
deformation rate γ . Time scale λ is calculated from 
the Doi-Edwards theory and is shown to characterise 
the onset of shear-thinning in shear flow. 
For dilute solutions, the onset of viscoelastic effects 
takes place at 3λγ ≅ . For  between 3 to about 10, 
flow is characterised by a transition regime where 
the main feature is the evolution of molecular 
alignment along the streamlines. As a result, the 
relation between pressure drop and flow rate is linear 
and the vortex reattachment length as well as the 
slope of the vortex boundary on the orifice plane 
become independent of flow rate. 

λγ

For solutions well into the semi-dilute range, the 
results indicate that neighbouring molecules hinder 
alignment, so higher λγ  values are required for 
molecular orientation. Due to the very high values of 
λ, only the end of the transition regime and the 
beginning of the final linear regime were within the 
range of experimental observations. Results in the 
literature also cover the final regime, where the 
vortex length is independent of the flow rate. 
Our results for dilute solutions show that, as 
expected, the vortex re-attachment length varies 
from the newtonian value at very low flow rates (the 
higher the length and so the λ value, the lower the γ  
where Newtonian behaviour occurs) where 
molecules are randomly oriented, to a constant value 
at high flow regimes where molecules are fully 
aligned. For semi-rigid molecules where molecular 
orientation is the basic phenomenon, vortex growth 
is much slower than in solutions of flexible 
molecules, where in addition important molecular 
deformation takes place. 
The transition regime that separates the newtonian 
from the asymptotic high flow rate regime, remains 
to be studied for the semi-dilute solutions. As 
shown, the basic problem is that, due to important 
aspect ratios of the semi-rigid macromolecules very 
high relaxation times characterise the solutions. 
Observations should be performed at extremely low 
flow regimes.  
The extensional properties were determined by the 
Binding analysis. This analysis shows that when Pg 
is linear with qv for a constant viscosity fluid, the 
extensional viscosity is constant. Another prediction 
of the Binding analysis was verified: the variation of 
the limiting value of the slope of the vortex 
boundary as the Trouton ratio to the power (-1/2). 
The analysis of Batchelor predicts also a constant 
Trouton ratio when molecules are fully aligned with 
the streamlines. Good agreement is shown to exist 
between the two theories, provided some molecular 
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extension - naturally much lower than the one 
expected for flexible molecules - is considered. 
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