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Abstract: The capacity planning and operation problem of a multi-purpose water reservoir has been extensively
studied in the literature. Optimization techniques, especially linear programming, have been used quite success-
fully. Although most models are robust enough as planning tools, they fall short of providing an operational policy
for the shorter term. In this paper, we consider the operation of a multi-purpose water reservoir problem. To elim-
inate the shortfalls of the classical models, we develop a multistage stochastic programming model that generates
a release policy adapted to the uncertainty in the problem for shorter time periods. The model is designed to be
flexible enough to be used as a planning or an operational tool. Alternative solution approaches and future research
directives are discussed.
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1 Introduction
Water resources management has been studied exten-
sively in the literature. In the past 30 years, many opti-
mization techniques have been developed to optimize
the management and operation of water resources.
The planning and operation of water reservoirs have
a strategic importance due to the high construction
costs and to the importance of making reliable opera-
tional decisions. This stems from the fact that most
reservoirs are of the multi-purpose type. Although
most reservoirs have one primary objective such as
generating hydropower or mitigating flood hazards,
they can also be used to satisfy downstream demand
for water for irrigation, enhancing wildlife, store wa-
ter for drought periods,...etc. In this literature review,
we shall focus mainly on linear and stochastic pro-
gramming. Turgeon (2005) finds the optimal daily
operating policy of a reservoir subject to yearly prob-
abilistic constraints on floods and shortages. He high-
lights the difficulty presented by the fact that inflows
are stochastic. He then decomposes the original prob-
lem into two subproblems that are solved with a set of
inflow scenarios. Lamond et al. (1995) propose ex-
act and approximate optimal policies for a reservoir
hydroelectric system, where the inflows in successive
periods are random variables. The model they analyze
is a discrete-time one. Wang et al. (2004) consider the
short-term scheduling of large hydro-power systems

for energy maximization. They formulate the prob-
lem as a nonlinear program with linear constraints and
solve it using a direct search procedure. In Sreeni-
vasan et al.(1996) and Edirisinghe et al.(2000), the au-
thors present a chance-constrained (stochastic) model
to take into account the uncertainty in meeting sys-
tem operation requirements. Edirisinghe et al. added
a target-priority characteristic to the model, whereby
demand for downstream water targets is given pri-
ority. Turgeon(1981) developed stochastic dynamic
programming (SDP) models for the optimization of
weekly operating policies of multireservoir hydro-
electric power systems. Dorfman(1962) and Dupa-
cova(1980) applied the same idea to the problem of
water resources management and planning. In this
type of models, the decisions in the consequent pe-
riods may be represented by loss functions of not
meeting some operational characteristics. Stochas-
tic linear programs (LP) for Markov processes have
been studied by Manne(1962) and Thomas and Wa-
termeyer(1962). Loucks(1968) developed a stochas-
tic LP for a single reservoir subject to random, seri-
ally correlated, net inflows that were described by a
first order Markov chain and transition probabilities
were estimated using historical inflows. Houck and
Cohon(1978) also assumed a discrete Markov struc-
ture for the streamflows. Dantzig(1955) suggested an
LP model which includes random variables. In his
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model, the activity levels are determined in the first
stage, then a corrective action is followed in the sec-
ond stage. This is known as stochastic programming
with recourse.

In a deterministic environment, Morel-Seytoux
(1999) define an optimal daily operating policy for a
system of rivers and associated reservoirs. He points
in particular to the delicate interdependency in the op-
timization of the objectives and the hydraulic char-
acteristics of the system. Martin (1995) develop a
methodology using both optimization and simulation
techniques to evaluate the ability of the hydropower
plants to meet weather-related winter peak power re-
quirements. He uses a linear programming proce-
dure to determine the hourly generation schedule for
the Lower Colorado River Authority of Texas. The
simulation/optimization modeling of water resources
has also been studied by Belaineh and Peralta (1999).
The integrative approach is quite efficient for solving
large complex problems. In this case, the authors in-
tegrate linear decision rules with detailed simulations
of stream/aquifer system flows. Lamond and Sobel
(1995) discuss the exact and approximate solutions of
affine reservoir models where autocorrelated inflows
are modeled with a linear autoregressive stochastic
process. The important finding they report is the fact
that a myopic policy, for the case where interbasin
transfers are included, is optimal if the deterministic
and stochastic portions of the inflow process are al-
ways non-negative. Yang et al. (1995) compare real-
time reservoir operation techniques and confirm the
value of simple optimization methods and the applica-
bility of scenarios methods in real-time reservoir op-
eration.

However, deterministic models have important
limitations that Philbrick and Kitandis (1999) report.
The authors contrast the control policies developed
using deterministic optimization with policies using
stochastic optimization of probabilistic inflows and
conclude that the stochastic approach is more accu-
rate. For a state-of-the-art review of the optimal op-
eration of multireservoir systems, the reader is di-
rected to refer to the Labadie (2004) review paper and
the closure and discussion of that review by Labadie
(2005) and Lund (2005). Other approaches to the
management and operation of water reservoirs have
been developed in the literature. For instance, fuzzy
multi-stage stochastic programs such as in Maqsood
et al. (2005), fuzzy-state stochastic dynamic program-
ming such as in Mousavi et al. (2004), and neural net-
works such as in Chandramouli and Raman (2001).
However, as mentioned above, the emphasis of this
review is on the linear and stochastic programming
approaches.

In this paper, we develop a multi-stage stochastic

programming model for the reservoir problem involv-
ing multiple periods representing 12 months of oper-
ation. The main source of randomness in the reser-
voir is the monthly water inflow to the reservoir. The
downstream demand for irrigation water is prescribed
a priori and thus it is not random, see Edirisinghe et al
(2000). During any month, the randomness of inflow
will be modeled by a sample of discrete outcomes,
generated randomly subject to the history of inflow
up until that month. In the sequel, we will develop a
scenario tree of potential future inflow patterns. With
fairly dense scenario trees, such models tend to be-
come exponentially large as the number of stages and
periods increase, and thus the computational cost to
solve them also increases exponentially. Therefore,
it would be imperative to either use approximation
techniques such as Edirisinghe (1999), and/or exploit
the structure of the problem and devise decomposition
techniques that render efficient solution of the multi-
period reservoir model with scenario trees.

In section 2, the multistage stochastic program-
ming model is developed. In section 3, solution al-
ternatives are presented and discussed. Summary and
future research remarks in section 4 conclude this ex-
position.

2 Multistage Stochastic Model
The reservoir manager must make a release decision
before knowing what the inflows will be in the fu-
ture. Therefore, the model we devise is nonanticipa-
tive, and it requires a “here-and-now” solution. The
proposed model will minimize the deviations from the
specified reservoir operation characteristics, such as
the firm energy level and the dead storage level. Op-
erational or recourse costs are imposed on the model
so as to penalize the system operation that would tend
to violate the specified system constraints. These will
be discussed next.

2.1 System Constraints
In CCP models, the system constraints are specified as
chance constraints, where constraint violations are al-
lowed and controlled via probabilities. In our model,
the degree of violation of a constraint is considered
and controlled explicitly. First, the storage level at
the beginning of month (t + 1), St, must be at least
SD, the dead storage level, for energy to be gener-
ated. Therefore the deviation from SD, denoted by
δSD, is modeled by the following equation:

St − SD = δSD
t . (1)

Note that δSD
t is a random variable and δSD

t ≥ 0 indi-
cates the satisfaction of the dead storage constraint in
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month t.
The reservoir is also used to mitigate flood haz-

ards during high inflow seasons. The deviation from
maintaining a specified flood reserve, Vt in month t,
is given by the equation:

St − (K − Vt) = δF
t . (2)

where K is the reservoir size. In order to ensure
continued operation of the reservoir in subsequent
years provided that the inflow distribution remains un-
changed, we require the terminal storage, ST , be close
in value to the initial storage, S0. The deviation of ST

from the initial storage level S0 is given by the equa-
tion:

ST − S0 = δS0
T . (3)

In Edirisinghe et al. (2000), modeling the target pri-
ority directly with a linear constraint was not possible
since the releases were considered to be deterministic.
A surrogate constraint was used to ensure demand for
water was satisfied with a certain probability. In the
present model, releases, Rt, are not constrained to be
deterministic, i.e. releases conform to a nonanticipa-
tive policy. Therefore, the deviation of meeting water
targets, Tt, are given by:

Rt − Tt = δD
t . (4)

Note that flood reserve constraint violations corre-
spond to δF

t > 0, and water target constraint viola-
tions correspond to δD

t < 0. However, violation of
the overyear storage requirement indicates δS0

T 6= 0.
Since the operation of a water reservoir is a continu-
ous process in time, the ending storage and the begin-
ning storage are related by the continuity equation,

St = St−1 + It −Rt, (5)

assuming no other loss of water is possible, where It is
the inflow realized in period t. In the next section, we
consider the case of modeling the energy generation
under the stochastic programming approach.

2.2 Energy generation
The firm energy level, defined as the minimum guar-
anteed energy generated throughout a planning hori-
zon, was maximized subject to the system constraints
and that the target priority in the release policy is sat-
isfied. In order to maintain the target priority nature
and for computational convenience, a ∆0 release pol-
icy was considered in the CCP model. However, in
the present model, such a restriction is not needed
and the releases are random functions that depend on
the history of inflow realizations. In order to max-
imize the firm energy level, a certain firm energy

level is specified to the model and the deviation of
min(EGt, t = 1, . . . , T ), is accounted for and min-
imized as will be explained next .

2.2.1 Energy generation constraint

The energy generated is a function of the release and
the average water head on the turbines. Given a tran-
sition of the system form St−1 to St, the energy gen-
erated at period t can be represented by the following

EGt = ωRt[
e

2
(St + St−1) + f ]. (6)

where e and f are constants based on a typical oper-
ating range of the reservoir, and ω is a dimensional
constant that reflects turbine efficiency. Note that the
release Rt will not contribute toward energy genera-
tion if both St and St−1 are below the dead storage
level. In order to compute the exact value of the en-
ergy generation, we define the variables xt, yt, ht, and
zt as follows

xt =

{
1 if St ≥ SD,

0 otherwise
(7)

yt =

{
0 if St ≥ SD,

−δSD
t otherwise

(8)

ht =

{
δSD
t if St ≥ SD,

0 otherwise
(9)

zt =

{
1 if xt−1=1 OR xt=1,

0 otherwise
(10)

Note that (St + St−1) may be restated as:

St + St−1 = 2SD + δSD
t + δSD

t−1. (11)

For the case when both the beginning and ending stor-
ages in month t are above the dead storage,

St + St−1 = 2SD + ht + ht−1 (12)

holds. In general, however, 1
2(2SD + ht + ht−1) rep-

resent the average “effective storage” available for hy-
dropower generation. We also want to determine the
effective release, defined as the released amount of
water that contributes toward energy generation. This
can be done by subtracting the amount of water below
SD from the release Rt as follows

Reff = Rt − yt − yt−1 (13)

The energy generation function can therefore be writ-
ten as follows

EGt = ωzt(Rt−yt−yt−1)[
e

2
(2SD+ht+ht−1)+f ]

(14)
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Observe now that only the amount of water released
that contributes toward energy generation is taken into
account. Likewise, the average water head on the tur-
bines is not over-estimated by taking the simple av-
erage of St−1 and St as in the CCP model. Now to
ensure a given firm energy level, say η, any deviation
from η, which we shall represent by δEG, is penalized.
Therefore, the energy generation constraint violation
can be written as follows:

η − EGt = δEG
t . (15)

2.3 Multistage stochastic model
2.3.1 Rewriting the constraints

As we mentioned in the introduction, the energy au-
thority has to make here-and-now decisions regarding
the releases. This implies that the release in the first
period, R1, is independent of the inflow. The same
holds true for the target violation variable δD

1 since the
target satisfaction depends only on the release. How-
ever, the storage at the end of period 1 depends on the
inflows due to the continuity equation (5). This depen-
dence implies that δSD

1 , δF
1 , and δEG

1 also depend on
the realization of the random event, i.e. which inflow
occurred. Note, however, that the release in period
2 depends on the ending storage of period 1, S1, and
does hence depend on the inflow in period 1, I1. To re-
flect these dependencies on which of the inflows was
manifested, letHt−1 := I1, . . . , It−1 be the history of
inflows up to a period t. The constraints (5),(4),(2),
(1), and(3), are written as follows

St,Ht−1 = St−1,Ht−1+It,Ht−1−Rt,Ht−1 ; t = 1, . . . , T
(16)

Rt,Ht−1 − Tt,Ht−1 = δD
t,Ht−1

; t = 1, . . . , T (17)

St,Ht−1 − (K − Vt) = δF
t,Ht−1

; t = 1, . . . , T (18)

St,Ht−1 − SD = δSD
t,Ht−1

; t = 1, . . . , T (19)

ST,HT−1
− S0 = δS0

T,HT−1
; t = T (20)

The energy generation constraint is more cumbersome
since we want to consider a firm-energy level, which
is the same over a specified time horizon. Therefore,
the penalty δEG

t is taken as the deviation of the firm
energy level from the specified energy level across a
scenario. This delicate dependence can be easily rep-
resented by

η − EGt,Ht−1 = δEG
T,HT−1

; t = 1, . . . , T (21)

2.3.2 The objective function

In the objective function, we want to minimize the
penalty from operating the reservoir. The penalty be-
ing the cost of deviating from the reservoir operating
characteristics. So it can be represented by the follow-
ing

min F (δEG
t,Ht−1

, δS0
T,Ht−1

, δD
t,Ht−1

, δF
t,Ht−1

, δSD
t,Ht−1

);

t = 1, . . . , T.

(22)

Note, however, that δSD
t need not be considered ex-

plicitly in the objective function since it’s impact is
implicitly penalized in the energy generation function
EGt. The cost function in (22) is nothing but the sum
of the expected cost of each variable in each scenario.
The complete objective function can be written there-
fore as

min λ[
T∑

t=1

PHt−1FδEG(δEG
t,Ht−1

)

+
∑
ϕ

PHT−1FδS0 (δ
S0
HT−1

)

+
T∑

t=1

(PHt−1FδD(δD
t,Ht−1

))

+
T∑

t=1

(PHt−1FδF (δF
t,Ht−1

))]

(23)

where ϕ is the set of all possible scenarios.

2.3.3 Complete Multistage Stochastic Model

We have defined the variables xt, yt, ht, and zt earlier
to define the energy generation constraint. However,
we have introduced them as indicator function rather
than constraints that can be included in the complete
formulation of the model. To convert those to con-
straints, we proceed as follows. Let M denote a very
large number.

M(xt,Ht−1 − 1) ≤ δSD
t,Ht−1

; t = 1, . . . , T (24)

−Mxt,Ht−1 − yt,Ht−1 ≤ δD
t,Ht−1

; t = 1, . . . , T
(25)

yt,Ht−1 ≥ 0; t = 1, . . . , T (26)

zt,Ht−1 ≤ xt,Ht−1 + xt−1,Ht−1 ; t = 1, . . . , T (27)

0 ≤ zt,Ht−1 ≤ 1; t = 1, . . . , T (28)

ht,Ht−1 = xt,Ht−1δ
SD
t,Ht−1

; t = 1, . . . , T (29)
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With these definitions (constraints) in place, the mul-
tistage stochastic model is completely defined. The
formulation is presented in its general form as the fol-
lowing MultiStage Stochastic Program (MSSPT ).

minλ[
∑T

t=1 PHt−1FδEG(δEG
t,Ht−1

)
+

∑
ϕ PHT−1FδS0 (δ

S0
HT−1

)
+

∑T
t=1(PHt−1FδD(δD

t,Ht−1
))

+
∑T

t=1(PHt−1FδF (δF
t,Ht−1

))]

s.t.

St,Ht−1 = St−1,Ht−1 + It,Ht−1 −Rt,Ht−1 ; t = 1, . . . , T
Rt,Ht−1 − Tt,Ht−1 = δD

t,Ht−1
; t = 1, . . . , T

St,Ht−1 − (K − Vt) = δF
t,Ht−1

; t = 1, . . . , T

St,Ht−1 − SD = δSD
t,Ht−1

; t = 1, . . . , T

ST,HT−1
− S0 = δS0

T,HT−1
; t = T

M(xt,Ht−1 − 1) ≤ δSD
t,Ht−1

; t = 1, . . . , T

−Mxt,Ht−1 − yt,Ht−1 ≤ δD
t,Ht−1

; t = 1, . . . , T

yt,Ht−1 ≥ 0; t = 1, . . . , T
zt,Ht−1 ≤ xt,Ht−1 + xt−1,Ht−1 ; t = 1, . . . , T
0 ≤ zt,Ht−1 ≤ 1; t = 1, . . . , T
ht,Ht−1 = xt,Ht−1δ

SD
t,Ht−1

; t = 1, . . . , T

η − EGt,Ht−1 = δEG
T,HT−1

; t = 1, . . . , T

(30)

This is a general formulation in all aspects. The time
horizon is left as a parameter, T , and so are the penalty
cost functions. Now that the model is complete, a so-
lution procedure needs to be devised. In the next sec-
tion, we discuss the different alternatives to solve this
model efficiently.

3 Solution Alternatives
The above formulated model suffers from the curse
of dimensionality, whereby these models become very
large as the number of periods and scenarios increase.
Despite the tremendous computing power that is avail-
able nowadays, it would still be quite impractical to
solve such a model using conventional, even upscale,
linear programming solvers. With only 12 periods
and 10 outcomes per period, the model will have to
consider 1012 different scenarios. Stochastic dynamic
programming (SDP) can be used as a tool to solve

these models. It has been proposed and used in the
literature. However, SDP models also suffer from
the curse of dimensionality, and as the number of
nodes increase, the solution cost increases exponen-
tially. Hence, it would be imperative to look into the
structure of such models, and attempt to devise so-
lution algorithms that exploit the problem structure in
order to render an efficient and practical solution. This
venue has been taken by the author and such solution
technique has been developed.

4 Conclusion
We have presented a multistage stochastic program-
ming model to study the planning and operation prob-
lem for a single multi-purpose water reservoir. The
stochastic programming models have the flexibility of
accounting for inflow dependence to a much higher
degree. This is due to the fact that these models
actually consider the randomness in the inflows ex-
plicitly in the search for a solution through a sce-
nario approach, whereas the CCP model only uses
the marginal distributions. While the proposed model
provides a good long-term operation tool, its focus
is limited to monthly decision periods. An opera-
tional model would have to take into account a de-
cision period much shorter than a month, and would
need to have the flexibility of providing better solu-
tions as random events unfold. An other alternative
is the rolling horizon approach, where the model is
re-solved at the end of each operational period, the
model being revised with new observations of inflow
data. These avenues would certainly be worth consid-
ering and should be the subject of future research.

Acknowledgements: Part of this research was sup-
ported by a SARIF grant from the University of Ten-
nessee in the summer of 1999. The authors would
also like to thank two anonymous referees for their
constructive comments.

References:

[1] G. Belaineh and R.C. Peralta, Simula-
tion/Optimization Modeling for water Resources
Management, Jrnl. of Water Res. Planning &
Management 125, 1999, pp. 154–162.

[2] R.E. Bellman, Dynamic Programming, Prince-
ton University Press, Princeton, N.J., 1957.

[3] V. Chandramouli and H. Raman, Multireservoir
Modeling with Dynamic Programming and Neu-
ral Networks, Jrnl. of Water Res. Planning &
Management 127, 2001, pp. 89–98.

Proceedings of the 2006 IASME/WSEAS Int. Conf. on Water Resources, Hydraulics & Hydrology, Chalkida, Greece, May 11-13, 2006 (pp146-151)



[4] G.B. Dantzig, Linear Programming Under
Uncertainty, Management Science, 1, 1955,
pp. 197-206.

[5] R. Dorfman, Mathematical Models: The Multi-
structure Approach, in the Design of Water
Resources Systems, Harvard University Press,
Cambridge, Massachussettes, 1962.

[6] J. Dupacova, Water Resources System modeling
Using Stochastic Programming Models, Recent
Results in Stochastic Programming, Springer-
Verlag, New York 1980.

[7] N.C.P. Edirisinghe, Bound-Based Approxima-
tion in MultiStage Stochastic Programming, An-
nals of Operations Research, 85, 1999, pp. 103-
127.

[8] N.C.P. Edirisinghe, I. Patterson and N. Saadouli,
Capacity Planning Model for a Multipurpose
Water Reservoir with target-Priority Operation,
Annals of Oper. Res., 100, 2000, pp. 273-303.

[9] M.H. Houck and J.L. Cohon, Sequential Explic-
itly Stochastic Linear Programming Models: A
Proposed Method for Design and Management
of Multi-purpose Reservoir System, Water Re-
sources Research, 14, 1978, pp. 161-168.

[10] J.W. Labadie, Closure to ”Optimal Operation
of Multireservoir Systems: State-of-the-Art Re-
view”’, Jrnl. of Water Res. Planning & Manage-
ment 131, 2005, pp. 407–407.

[11] J.W. Labadie, Optimal Operation of Multireser-
voir Systems: State-of-the-Art Review, Jrnl. of
Water Res. Planning & Management 130, 2004,
pp. 93–111.

[12] B.F. Lamond and M.J. Sobel, Exact and Ap-
proximate Solutions of Affine Reservoir Models,
Oper. Res. 43, 1995, pp. 771–780.

[13] B.F. Lamond, S.L. Monroe and M.J. Sobel, A
Reservoir Hydroelectric System: Exactly and
Approximately Optimal Policies, Europ. Jrnl. of
Oper. Res. 81, 1995, pp. 535–542.

[14] D.P. Loucks, Computer Models for Reservoir
Regulations, Journal of Sanitary Engineering
Division, American Society of Civil Engineers,
94, 1968, pp. 657-669.

[15] J.R. Lund, Discussion of ”‘Optimal Operation
of Multireservoir Systems: State-of-the-Art Re-
view”’ by John W. Labadie, Jrnl. of Water Res.
Planning & Management 131, 2005, pp. 406–
407.

[16] A.S. Manne, Product Mix Alternatives: Flood
Control, Electric Power and Irrigation, Interna-
tional Economics Review, 8, 1962, pp. 30-54.

[17] I. Maqsood, G.H. Huang and J.S. Yeomans, An
Interval-Parameter Fuzzy Two-Stage Stochastic
Program for Water Resources Management Un-
der Uncertainty, Europ. Jrnl. of Oper. Res. 167,
2005, pp. 208–225.

[18] Q.W. Martin, Optimal Reservoir Control for Hy-
dropower on Colorado River, Texas, Jrnl. of Wa-
ter Res. Planning & Management 121, 1995,
pp. 438–447.

[19] H.J. Morel-Seytoux, Optimal Deterministic
Reservoir Operations in Continuous Time, Jrnl.
of Water Res. Planning & Management 125,
1999, pp. 126–135.

[20] S.J Mousavi, M. Karamouz and M.B. Menhadj,
Fuzzy-State Stochastic Dynamic Programming
for Reservoir Operation, Jrnl. of Water Res.
Planning & Management 130, 2004, pp. 460–
470.

[21] G.L. Nemhauser, Introduction to Dynamic Pro-
gramming, John Wiley, 1966.

[22] R.C. Philbrick Jr. and P.K. Kitandis, Limitations
of Deterministic Optimization Applied to Reser-
voir Operations, Jrnl. of Water Res. Planning &
Management 125, 1999, pp. 135–142.

[23] K.R. Sreenivasan and S. Vedula, Reservoir Oper-
ation for Hydropower Optimization: A Chance-
Constrained Approach, Sadhana, 21, 1996,
pp. 503-510.

[24] H.A. Thomas and P. Watermeyer, Mathemati-
cal Models: A Stochastic-Sequential Approach
in Design of Water Resources Systems, Har-
vard University Press, Cambridge, Massachus-
setts, 1962, pp. 540-564.

[25] A. Turgeon, Daily Operation of Reservoir Sub-
ject to Yearly Probabilistic Constraints, Jrnl. of
Water Res. Planning & Management 131, 2005,
pp. 342–350.

[26] A. Turgeon, Optimal Short-term Hydro Schedul-
ing from the Principle of Progressive Optimality,
Water Resources Research, 17, 1981, pp. 481-
486.

[27] J. Wang, X. Yuan and Y. Zhang, Short-term
Scheduling of Large-Scale Hydropower Systems
for Energy Maximization, Jrnl. of Water Res.
Planning & Management 130, 2004, pp. 198–
205.

[28] X. Yang, E. Parent, C. Michel and P. Roche,
Comparison of Real-Time Reservoir Operation
Techniques, Jrnl. of Water Res. Planning &
Management 121, 1995, pp. 345–351.

Proceedings of the 2006 IASME/WSEAS Int. Conf. on Water Resources, Hydraulics & Hydrology, Chalkida, Greece, May 11-13, 2006 (pp146-151)


