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Abstract: - This paper presents the results of a remarkable effort to approximate the space of escape solutions of the 
axi-symmetric, two-degree of freedom dynamical system of the non-linear double oscillator corresponding to a third 
order potential. The initial conditions of escape solutions constitute a compact two-dimensional space in the (x, C) 
plane and the solutions generated by them, occupy densely its space of motion. Determination of the part of (x, C), 
within which ordered (non-chaotic) motions prevail, is better achieved through determination of the space of escape 
motions. 
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1  Introduction 
Τhe problem which we have treated here is that 
of  the coupled non-linear double oscillator. The 
study of the dynamics of coupled non-linear 
oscillators has attracted the interest of many 
researchers in recent years. The reason is that 
they arise in many branches of science in order 
to model and to explain different physical, 
chemical, biological, etc., processes. 
    Τhe potential V of this problem is given by 
the expression: 
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with A, B and b being constants. 
    A potential of this type may represent either 
the ‘effective potential’ on the meridian plane of 
an axi-symmetric galaxy near a given circular 
orbit, or the so-called ‘Barbanis potential’ 
following the work of Barbanis in the chemical 
literature[1].     
   The equations governing the motion are the 
following ones:  
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being the integral of its energy. 
    It is obvious that in the unperturbed case, 
where b=0, all the orbits can be resonant 
periodic Lissajous figures, or not resonant, 
depending on values taken for A and B. In our 

problem we treat here, a coupling term (b≠0) is 
present. 
The permissible area of motion and the 0-velocity 
curves are expressed by the inequality  
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the case of equality defining the boundary of this 
area. 
 
2  Escape Solutions Areas 
Our interest is focused on the study of solutions 
escaping to infinity. The first of our results having 
been found for another conservative dynamical 
problem of two degrees of freedom with escape orbits, 
reveal their spiral form on the plane (x, y)[2].  
Because of their significance many researchers have 
started studies on escape solutions in various 
problems, especially, of celestial mechanics [3],[4],[5] 
and [6]. 
    In the plane of initial conditions (x, C) and within 
the space of permissible motion we mark the points 
generating escape solutions in the plane (x, y), of one, 
two, etc., intersections with the x-axis. In Fig.1 we 
present areas of escape solutions of one intersection 
(in red color), of two intersections (in green color), of 
three (in blue color), of four intersections (in cyan 
color), of five intersections (in magenta color), of six 
intersections (in yellow color), of seven intersections 
(in dark yellow color), of eight intersections (in navy 
blue color) and of nine intersections (in purple color) 
with the x-axis. The values used for the constants are 
A=1, B=2, and b=0.5. 
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        Fig. 1: Escape solutions areas of one up to nine 
                     intersections with x-axis. 
    
In Figures 2, 3, 4 and 5 on the (x, y) plane we present 
four escape solutions of one, two, three and four 
intersections, respectively, with the x-axis.  
                                
 
                                                                                                
 
 
 
 
 
 
 
              
 
  
    
 
 
         Fig. 2: Escape solution with initial conditions:  
                            x=1.2, C=3.8.  
 
 
 
 
 
 
 
 
    
 
 
 
 
     
 
 
      Fig. 3: Escape solution with initial conditions:  
                            x=-1.2, C=3.4. 
 

 
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 4: Escape solution with initial conditions: 
                           x=2.2, C=3.4.                            
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
     
      Fig. 5: Escape solution with initial conditions:  
                                 x=1.2, C=3.4. 
 
          
 For the value, for instance, of  C=2.69, we find 
symmetric periodic solutions of one, two, etc, 
intersections with x-axis, i.e. solutions which intersect 
normally the x-axis initially, and at the first, second, 
etc., respectively, intersection and in this way, 
simultaneously, we locate the initial points conducting 
to escape solutions. 
     In Fig. 6 we present symmetric and periodic 
solutions in ordered or chaotic areas in black color, 
while the points which generate escape solutions in red 
color. The periodic solutions give a picture of order in 
the middle of this diagram. We see that the ordered 
area is surrounding by a chaotic region at its borders, 
whereas the escape regions have gaps containing non-
escaping orbits. We also note that the escape regions 
are shifting toward the middle of the figure as the 
number of intersections is increasing (from 1 to 100). 
This configuration seems to “converge”, as the number 
of intersections increases, to some apparently “final” 
form. The values used for the constants are A=1, B=2, 
and b=0.5.  
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          Fig. 6: Periodic solutions and escape solutions 
                                for C=2.69.    
 
       
     During the search of symmetric periodic solutions 
in the (x, C) plane for a large number of intersections 
with the x-axis, e.g. one hundred intersections within 
half time of their period, i.e. solutions intersecting 
normally this axis at the hundredth intersection (the 
starting point not including), we locate the points 
conducting to escape solutions.  The escape solutions 
have initial conditions shown as points in red color, in 
Figure 7 appearing below. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

                                                        
 
 
  
  
   Fig. 7: Area of escape solutions and area of order. 
  
 
The initial conditions appearing in the Fig. 7 
correspond to values of C starting from a certain value 
and above and extend as far as the space of order (non 
chaotic). This space is covered densely by stable arcs 
of families of periodic solutions and it constitutes the 
space of order in the invariant curves [7]. The values 
used for the constants are A=1, B=2, and b=0.2. 

    
   The curves of families of periodic solutions are 
continuous in the analytical sense with their periods 
varying continuously along the same family curve and 
from 1 to infinite oscillations from start to re-entrance, 
from curve to curve. Next, and as close as we select, to 
each curve we can compute another periodic family 
curve and thus fill the (x, C) space with such curves. 
The periodic family curves are countably dense and 
thus as close as we like to any randomly selected point 
and hence corresponding to a non-periodic solution 
with probability1, a point resting on a periodic family 
curve can be found [8]. 
    The invariant curves on a Poincaré surface of 
section (x, x&) in the Hamiltonian (3) for A=1, B=2, 
b=0.5 and C=2.69 are presenting in Fig. 8. We notice 
that the interior of the space of order is occupied by 
closed and uniformly varying sets of invariant 
 
 
 
 
 
 
 
 

 
 
 
 

                 
 
 
 
 
 
 
 
                Fig. 8: Invariant curves for C=2.69. 
 
 
curves, whereas the external region is revealing a 
picture of chaos which is indicated by points in red 
color signifying escape solutions. We note that there 
are no Poincaré surfaces of section when the orbits 
escape, i.e. there is no return. In this way, the escaping 
orbits meet the (x, x&) plane at a finite, always, number 
of points on it. We see that the infinity ‘‘attracts’’ 
them. In this case the theorem of Liouville still holds, 
but the areas on a surface of section are not conserved. 
      It is worthwhile mentioning that in the picture of 
Fig. 8 two simple symmetric and periodic solutions 
appear. The stable one corresponds to the centers of 
the small islands. The unstable one (which it was 
stable for a constant of energy C less than a critical 
value of C<2.69) in-between the two islands 
corresponds to the point (1.13, 0). 
     All numerical integrations were performed by use 
of the 8th order Runge-Kutta, variable step-size, 
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algorithm that secured variation of the energy constant 
to less than 1010− for all solutions. 
 
 
3   Conclusion 
        The determination of the space of order in the (x, 
C) plane, either by computing families of periodic 
solutions and the study of the stability of their 
members, or by a systematic study of the phase 
configuration on the surface of section (y=0) of the 
Hamiltonian (3) for various values of the energy C, is 
a relatively cumbersome procedure. The same 
objective is achieved much more easily through 
determination of the initial conditions, in the (x, C) 
plane, that generate escape solutions of large number 
of intersections with the x-axis.    
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