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Abstract: - The linear stability of reverse high speed-viscous plane Couette – Poiseuille flow is investigated 
numerically. The conservation equations along with Sutherland’s viscosity law are studied using a second order finite 
difference scheme. Basic velocity and temperature distributions are perturbed by a small amplitude normal-mode 
disturbance. Small amplitude disturbance equations are solved numerically using a global method to find all the 
eigenvalues at finite Reynolds numbers. The results indicate that instabilities occur, although the corresponding growth 
rates are often small.  The aim of the study is to see the effect of the reverse flow on the stability compared to the direct 
flow. In the combined plane Couette – Poiseuille flow, the new mode, Mode 0, which seems to be a member of even 
modes such as Mode II, is the most unstable mode.   
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1   Introduction 
In an internal combustion engine, the processes leading 
to the formation of pollutants are complex and therefore 
experimental techniques are of widespread use in engine 
development. The oil flow through the piston-cylinder 
system has numerous flow passages and local volumes 
where engine oil can flow through and accumulate 
ending up in the exhaust system. Combustion gases also 
flow through the same passages and volumes 
simultaneously, resulting in a complex two-phase flow 
phenomenon.  The flow velocities approach sonic speeds 
in the ring end gaps, where engine oil is entrained in the 
high speed gases. The pressure gradient, and the wall 
velocity may have opposing effects on the flow direction 
during the compression stroke. Understanding the 
physics of this complex problem would enhance the 
understanding and controlling the entrainment of engine 
oil that is later released to the atmosphere as a source of 
unburned hydrocarbons. It is the aim of this study to 
understand the parameters leading to flow instability in 
reverse Couette – Poiseuille flows, where the effect of 
the pressure gradient and velocity at the wall are 
opposite, and the gas velocity approaches sonic speeds. 

1.2  Review of Previous Work 
The stability of Couette and Poiseuille flows has been 
under investigation for a long time. Analysis of the 
incompressible viscous and/or inviscid stability problem 
based on the Orr-Sommerfeld equation has been widely 
reported in the literature. Yih considered the stability of 
superposed fluids of different viscosity in plane Couette 
and Poiseuille flow. The variation of viscosity in a fluid 
can cause instability. He concluded that both plane 
Couette and Poiseuille flows can become unstable even 
for small Reynolds numbers [6]. Malik compared 
various numerical methods for the solution of stability 
equations for compressible boundary layers. He 
discussed both the global and the local eigenvalue 
methods for temporal stability analysis [5]. Hu and 
Zhong studied the viscous linear stability of supersonic 
Couette flow using two global methods to solve the 
linear stability equation. They used a fourth order finite 
difference method and a spectral collocation method.  
They found that two wave modes are unstable at finite 
Reynolds number. These modes are acoustic modes 
created by sustained acoustic reflections between a wall 
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and a relative sonic line when the mean flow in the local 
region is supersonic with respect to the wave velocities.  
Effects of compressibility, three dimensionality and wall 
cooling on the two wave families are also studied [4]. 
Orszag solved the Orr-Sommerfeld equation numerically 
using expansions in Chebyshev polynomials and the QR 
matrix eigenvalue algorithm. The method was applied to 
the stability of plane Poiseuille flow and it was shown 
that results of great accuracy could be obtained very 
economically. He found the critical Reynolds number as 
5772.22, reducing all lengths by the half-width of the 
channel and velocities by the undisturbed stream 
velocity at the center of the channel [8]. 
 

2   Problem Formulation 
Under brake conditions of an engine, the pressure in the 
intake manifold becomes lower than the crankcase.  
When this occurs, lubricating oil is sucked from the 
crankcase through the piston clearances and ring gaps 
into the combustion chamber. To understand the 
entrainment of oil into the high-speed gas, it is necessary 
to investigate the instabilities at the oil and gas interface.  
The thickness and the velocity of the oil film moving on 
the stationary plate are small compared to the high-speed 
gas flow above the oil film and regarding the high 
viscosity of oil compared to that of air, the oil layer 
behaves like a solid wall as far as the stability of the gas 
phase is concerned.  Therefore, it is possible to study the 
stability of the high-speed gas flow only, and interpret 
the findings to apply to the gas-oil system. 
 
     Although this approach simplifies the problem, the 
formulation does not compromise the physics and the 
omission of the oil layer in the analysis is not expected to 
have an effect on the magnitude of critical Reynolds 
number for the combined plane Couette-Poiseuille flow. 
The flow geometry is given in Fig.1. This approach is 
justified by Özgen [3] who studied the characteristics of 
the instability of Newtonian and non-Newtonian liquid-
air system for low speed flows and concluded that for the 
case of air flowing over a thin layer of liquid, there is 
negligible effect of thin liquid layer on the stability of the 
two-phase flow provided that the liquid viscosity is much 
higher than the gas viscoisty.  The fact that, the existence 
of a thin liquid layer has little contribution to the two-
phase flow instability simplifies and allows the 
formulation of the problem for a single layer gas flow. 

 
3 Problem Solution 
3.1 Flow Description and Objectives 
The aim of the present study is to understand the effects 
of viscosity, temperature, compressibility and density 
on the stability of high speed parallel shear flows. The 
upper wall is moving in reverse streamwise direction 

while the gas stream is flowing in streamwise direction 
and the lower plate stays stationary. The high speed gas 
flow is viscous with compressibility effects, is parallel 
and fully developed.  Velocity and temperature profiles 
are functions of the normal distance to the wall only (y).  
The linearized disturbances are in the form of traveling 
sine waves whose amplification is in time. 

Fig.1. 2D representation of flow geometry and flow 
parameters 

3.2 Governing Equations of Perturbation Flow 
and Linear Stability Analysis 
Although considering two-dimensional disturbances for 
the lowest limit of stability is sufficient and approved 
by Squire’s theorem, three-dimensional form of the 
compressible viscous equations of motion is considered 
in this study, resulting in a more general formulation, 
thus allowing conversion to the three dimensional 
disturbance case if needed. The linear stability 
equations are based on a normal mode analysis of the 
linearized perturbation equations of the three-
dimensional Navier-Stokes equations. In the normal 
mode analysis, small disturbances are resolved into 
modes, which may be treated separately because each 
satisfies the linear system. The linear stability theory 
formulas presented in this study are valid for general 
compressible flows with parallel steady flow fields. The 
linear stability is considered for high speed viscous 
combined plane Couette-Poiseuille flow confined 
between finite parallel walls located at 0* =y  (lower 

wall) and ** hy =  (upper wall).  Each flow variable is 
assumed to consist of a mean part and infinitesimally 
small perturbations. Utilizing normal mode analysis, the 
perturbations are expressed in a Fourier series. The 
resulting disturbance equations are linear partial 
differential equations in the variables x, y, z and t.  The 
disturbance equations are linear and the coefficients are 
functions of y only. Then the separation of variables 
using normal modes (i.e., exponential solutions in terms 
of the independent variables) resulting in the ordinary 
differential equations can be used. One possible normal 
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mode is the single wave and is excited harmonically as 
in Equation (1). 

),,,(~),,,(),,,( tzyxqtzyxQtzyxq += &&&

)()(),,,(~ tzxieyQtzyxq ωβα −+=
)

                     (1) 

      The complex frequency is cαϖ = , while the real 
part of c  is the dimensionless phase speed,rc , and the 
imaginary part is the temporal amplification factor, ic .  
Disturbances are classified according to normal mode 
analysis in which are either amplified ( 0>ic ), neutral 

( 0>ic ), or damped ( 0<ic ).  The wave number α. is 
real and positive and represented as λπα /2= , where 
λ  is the wavelength. 
      

The Squire theorem states that when the mean flow 
velocities in y – and z – directions are zero, the lowest 
value of the critical Reynolds number occurs when β  = 
0. The equation governing a three-dimensional 
oscillation is the same as that of a two-dimensional 
oscillation except the transverse wave number, β, and 
other terms for the z – momentum equation.  If α and �β 
are real, the presence of β   acts in a way to effectively 
increase the viscosity.  In the stability calculations, two-
dimensional disturbances are considered and the wave 
number, β, in z – direction taken to be zero.  The set of 
equations of motion, continuity, energy, equation of 
state and Sutherland’s rule of viscosity for viscous 
compressible ideal gases in dimensional form are used 
for the linear stability analysis. Equation (2) gives the 
Sutherland’s law for the viscosity [7]. 
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     In case of parallel flows, the flow parameters are 
functions of y* only, i.e., *)(** yuu = , *)(** yww = , 

*)(** yTT = , *)(** yµµ = , *)(** ykk =  and normal 
component of the mean velocity is zero, 0* =v . 
Cartesian coordinate system and the following scaling 
factors are used in non-dimensionalization of the 
conservation equations.  The length scale is the channel 
height, *h , velocity scale is the velocity at the upper 
moving wall, *

∞U .  Density *
∞ρ , viscosity *

∞µ  and 

thermal conductivity *
∞k  are all at the reference 

temperature of 288 K of upper wall, pressure is 

nondimensionalized by 
2**

∞∞Uρ and the time by ** / ∞Uh .  
All other variables are nondimensionalized by their 
corresponding values on the upper wall.  The 
dimensionless variables are represented by the same 
symbol as those used for the dimensional variables but 
without the asterisk, *.  When compared with the mean 
flow, the perturbations are small, therefore, quadratic 

fluctuating terms such as 
x

u
U
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u
u

∂
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~  can be 

neglected.  In all the above equations, there are also 
fluctuating components of viscosity and thermal 
conductivity which are also functions of temperature as 

T
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3.3. Method of Normal Modes and Generalized 
Eigenvalue Problem 
The linear stability analysis is based on normal mode 
analysis of the linearized perturbation equations of the 
three-dimensional Navier-Stokes equations. In the 
normal mode analysis for the linear disturbances, the 
fluctuations of flow quantities are assumed to be 
represented by harmonic waves of the following form in 
three dimensions as: 

[ ] )( )(ˆ),(ˆ),(ˆ),(ˆ),(ˆ
~

,~,~,~,~ ti zxeyTypywyvyuTpwvu ϖβα −+= .  The 
real part of ϖ , represents the frequency of the 
disturbance modes while the imaginary part of ϖ  
represents their temporal amplification rate. 

    Introducing the perturbation terms into the set of 
equations and differentiating with respect to y 
constitutes the set of generalized eigenvalue problem. 

    Linear disturbances satisfying all of the equations 
results in the generalized eigenvalue problem shown 
as in Malik [6]. 

0)( 2 =Ψ++ iDD CBA ,                                (3) 

where iΨ is the five element vector defined by 
trwTPvu )ˆ,ˆ,ˆ,ˆ,ˆ(  and A ,B  and C  which are 

)15()15( ++ NxN  matrices of functions of Re,,, ωβα  
and wM . The disturbance waves are three-
dimensional in general, while two-dimensional 
disturbance modes correspond to a special case of 

0=β .  We are interested in two-dimensional basic 
flow, then the velocity component )(yw  may be set 
to zero. The boundary conditions for Equation (3) 
are imposing the isothermal wall temperature at the 
upper wall. The lower wall assumes either 
isothermal or adiabatic wall boundary conditions.  

 

  0* =y   05421 =Ψ=Ψ=Ψ=Ψ  or 0/4 =Ψ dyd , 

  ** hy =         05421 =Ψ=Ψ=Ψ=Ψ                     (4) 

      

     Equations (3) and (4) constitute the homogeneous 
boundary value problem and the main scope is to 
determine the relation between the 

ϖβα   and MRe,,  , w  that satisfies the system which 
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constitutes a generalized eigenvalue problem, in the 
form of Re),,,( wMβαϖϖ = . 

 
4. Numerical Approach 
In order to implement a numerical solution, the 
computational domain,η , is divided into grids with equal 
spacing and the physical properties of the fluid are 
evaluated at the grid points in y – direction.  The 2nd order 
differential equations are discretized using )( 2hO finite 
difference formulae. Due to the staggered mesh 
generation there is no need to have an artificial pressure 
boundary condition on the walls. The three momentum 
and energy equations are written at full nodes.  The 
pressure information for those equations at full nodes is 
obtained from the neighboring half nodes at which 
continuity equation is written. The total number of full 
nodes is N and the total number of half nodes is N+1.  
For each full node there are 4 conservation equations and 
1 equation, the continuity, is written at the half nodes.  
The total number of equations written at all the nodes is 
5N+1. Equation (3) with the boundary conditions in 
Equation (4) represents the 5N+1 equations and 5N+1 
unknowns to be solved simultaneously. The discretization 
of the governing equations reduces the system to a 
generalized eigenvalue problem as Ψ=Ψ BA ϖ , where ϖ  
is the eigenvalue in the form of )( ir icc += αϖ .  Real part 
of ω , )Re(ϖ , represents the frequency of the disturbance 
modes, while the imaginary part, )Im(ϖ , represents the 
temporal amplification rate of disturbances.  The term Ψ  
is the discrete representation of the eigenfunction.  A and 
B are the square coefficient matrices of the stability 
equations. The matrices are complex and therefore are 
composed of real and imaginary submatrices shown as 

Ψ++=Ψ+ ))(()( irir BBAA iicci irα .  IMSL and Eispack 
QZ algorithms were used for the solution of the 
generalized eigenvalue. The double precision complex 
subroutines used as solver are DGVLCG and DWRCRN 
for IMSL libraries. 

 
5   Results 
This section reports on the analysis of high speed 
Couette and combined Couette – Poiseuille flows.  The 
effects of variable viscosity, temperature and density on 
the stability of Modes I and II for Couette flow and 
Mode 0 for Couette – Poiseuille flow are studied 
comparing the viscous results at finite Reynolds numbers 
with the results reported by Hu and Zhong for plane 
Couette flow [4].  
 
5.1 Critical Reynolds and Wave Numbers 
The critical Reynolds number, crRe is defined as the 
smallest value of Reynolds number for which an 

unstable eigenmode exists.  The investigation of critical 
Reynolds numbers and determination of the stable-
unstable regions on the Uwall/Umax-Re map were 
generated working on a range of upper moving wall 
Mach numbers between 0.0001 to 1.0.  
    
   In Fig.2, the critical Re numbers increase steadily as 
the velocity ratio increases until the Uwall/Umax ratio of 
roughly 0.1 for all the Mach numbers depicted. Curves 
corresponding to Mmax = 0.1 and 0.3 exibit an almost flat 
behavior for velocity ratios greater than 0.1 and the 
critical Reynolds numbers remain almost constant for 
Uwall/Umax ratios between 0.15 and 0.45. On the other 
hand, curves of 0.5, 0.7 and 1.0 are showing a strong 
dependence of the critical Reynolds number on the 
Uwall/Umax ratio for the entire range of this parameter.  
 
      After the velocity ratio of 0.55, the difference 
between the channel Mmax = 0.1 and 0.3 curves increases 
and the critical Reynolds numbers increase very rapidly 
with small increments in Uwall/Umax ratio. While beyond 
Uwall/Umax=0.5, the flow becomes unconditionally stable 
for the direct flow [2], same condition for the reverse 
flow occurs at 1.0. In the same trend, as the channel 
maximum Mach number increases, one sees that this 
strong stabilization occurs at progressively lower 
Uwall/Umax ratios.   
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
Fig. 2. Variation of critical Reynolds number with upper wall 
velocity. 
 
It is seen that, increasing the channel maximum Mach 
number from incompressible limit (low speed) to high 
speed, the stability of the flow is enhanced. It means 
that, although increasing the channel maximum Mach 
numbers result in a decrease in the upper wall Mach 
numbers, they cause an increase in the critical Reynolds 
numbers.  
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Fig. 3 concentrates on the lower values of 
Uwall/Umax ratio for the same cases as in Fig. 2. In this 
range, increasing the maximum Mach number in the 
channel destabilizes the flow. The most interesting 
thing is the intersection of all curves at the velocity ratio 
of 0.080.  Critical Reynolds number at the intersection 
point is around 22000 for all cases investigated. Similar 
condition occurs at the velocity ratio of 0.085 and the 
critical Reynolds numbers is at 26000 for the direct 
flow [2]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Variation of critical Reynolds number with upper wall 
velocity between U_wall/U_max= 0 - 0.1. 

     In Fig. 4, the variation of critical wave numbers with 
respect to the Uwall/Umax ratio are illustrated for all the 
flow cases. Generally, at Uwall/Umax=0 limit, for all cases 
the critical wave number is around 2.0. 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Variation of critical wave number with upper wall 
velocity. 

    

    Compared to the curves of related critical Reynolds 
number for each case, the curves for the wave numbers 
show an important difference: unlike the critical 
Reynolds number curves, the wave number curves do 
not intersect but being closer in the range of velocity 
ratios 0 and 0.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Variation of critical wave number with upper wall 
velocity between U_wall/U_max = 0-0.1. 

 

     Fig. 5 concentrates on the results for velocity ratios 
between 0.0 and 0.1, for the same cases treated in Fig. 4. 
For high speed flow, critical Reynolds and wave 
numbers are both smaller than the other cases along the 
curves and also at Uwall/Umax=0. Other possible minor 
differences on the overall results between the 
incompressible (low speed) results are due to solution 
method used and the differential equations solved.  
Currently, the set of governing equations for high speed 
flow are solved simultaneously instead of 
incompressible Orr–Sommerfeld equation and 

wM =0.0001 is employed as an incompressible limit for 
high speed flow for the validation.  
 

6  Conclusions 
In this study, the linear viscous stability 

characteristics of high speed Couette and combined 
Couette – Poiseuille flows have been investigated 
numerically. The upper wall moves in reverse direction 
while the flow between the walls in streamwise 
direction. The aim of the study is to see the effect of the 
reverse flow on the stability compared to the direct flow. 
In the combined plane Couette – Poiseuille flow, the 
new mode, Mode 0, which seems to be a member of 
even modes such as Mode II is the most unstable mode. 
High speed stability of channel flow with temperature 
effect is less commonly investigated compared to the 
incompressible isothermal flow.  The most significant 
consequence of high speed flow with temperature effect 
is the variation of the temperature and temperature 
related viscosity/conductivity profiles in the channel and 
the inclusion of the energy equation in the stability 
analysis. In this study, the effect of compressibility on 
the flow is minimized by setting the channel maximum 
Mach number to 0.1, which corresponds to 
incompressible flow conditions, rendering the 
temperature, viscosity and thermal conductivity constant 
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in the channel and results are compared to the findings 
of Orszag [8] and Özgen et al [1]. 

 
Regarding the cases with compressibility effects, it 

is observed that the effect of compressibility is to 
stabilize the flow. Another noteworthy results is that, the 
velocity ratio beyond which unconditional stabilization 
occurs increases significantly with increasing wall Mach 
number (from ≈0.5 in incompressible limit to ≈1 for 
Mwall=1.0). 

As far as the wave numbers are concerned, the 
unstable wave number range migrates to smaller wave 
number values as the compressibility effect is increased. 
This means that longer waves become prone to 
instabilities, while for incompressible flow, short waves 
(high wave numbers) could also become unstable.  
 

Nomenclature 
Superscripts 

* Dimensional quantities  
~ Dimensionless perturbation quantities 
^ Amplitude of dimensionless perturbation  quant 
_ Mean flow quantities 

Subscripts 
∞  Dimensional quantities  evaluated at upper 

moving wall 
w Dimensional quantities  evaluated at lower 

stationary wall 
o Dimensional mean flow terms 
cr  Critical values 
r Real part of complex quantities 
i Imaginary part of complex quantities 

Greek Symbols 
α  Wave number in streamwise, ( ir iααα += ) 
β  Wave number in spanwise, ( ir iβββ += ) 

Ψ  Generalized eigenvalue problem eigenvector 
ρ  Density, (kg/m3) 
µ  Dynamic viscosity, (kg/ms) 
ν  Kinematic viscosity, (m2/s) 
k  Thermal conductivity, (W/mK) 
λ  Second coefficient of viscosity, µλ 3/2−=  
c  Complex propagation wave velocity for 

temporal stability, ( ir iccc += ) 

rc  Dimensionless phase speed  

ic  Dimensionless temporal amplification factor 

ϖ  Temporal amplification rate, )( ir icc += αϖ  

Φ  Viscous heat dissipation  
Dimensionless Groups 

Re Reynolds number, **** /Re ∞∞∞= µρ hU  

Mmax maximum channel Mach number based on local 
velocity and temperature,  

wM  Upper  wall Mach number , ** / ∞∞= RTUMw γ  

Pr Prandtl number, *** /Pr ∞∞= kcpµ  

Alphanumeric Symbols 

CB,A,  Coefficient matrices of eigenvalue problem 
d1,2 Gas & oil layer thicknesses, (µm) 

pc  Specific heat constant at const pressure, (J/kgK) 

g  Gravitational acceleration, ( 81.9=g  m/s2) 

h  Dimensional channel height, (m) 
N  Node number in computational domain 
p  Pressure, (Pa) 

q ,Q  Velocity, temperature and pressure in linear 
stability analysis 

R Universal gas constant (R  = 287 J/kgK for air) 

1S  Dimensional constant Sutherland’s law 

T  Temperature , (K) 
Tw_up upper (moving) wall temperature , *∞T  

t  Time scale, (s) 
U ,u Streamwise velocity component, (m/s) 
Uw upper (moving) wall velocity , *

∞U  

Umax maximum velocity in channel, 
v  Velocity component normal to flow, (m/s) 
w  Spanwise velocity component, (m/s) 
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