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Abstract: - The linear stability of reverse high speed-viscous plane Couette — Poiseuille flow is investigate
numerically. The conservation equations along with Sutherland’s viscosity law are studied using a second order fil
difference scheme. Basic velocity and temperature distributions are perturbed by a small amplitude normal-m
disturbance. Small amplitude disturbance equations are solved numerically using a global method to find all
eigenvalues at finite Reynolds numbers. The results indicate that instabilities occur, although the corresponding grc
rates are often small. The aim of the study is to see the effect of the reverse flow on the stability compared to the d
flow. In the combined plane Couette — Poiseuille flow, the new mode, Mode 0, which seems to be a member of e
modes such as Mode I, is the most unstable mode.
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1 Introduction

In an internal combustion engine, the processes leading.2 Review of Previous Work

to the formation of pollutants are complex and thereforeThe stability of Couette and Poiseuille flows has been
experimental techniques are of widespread use in engingnder investigation for a long time. Analysis of the
development. The oil flow through the piston-cylinder incompressible viscous and/or inviscid stability problem
system has numerous flow passages and local volumésased on the Orr-Sommerfeld equation has been widely
where engine oil can flow through and accumulatereported in the literature. Yih considered the stability of
ending up in the exhaust system. Combustion gases alssuperposed fluids of different viscosity in plane Couette
flow through the same passages and volumesand Poiseduille flow. The variation of viscosity in a fluid
simultaneously, resulting in a complex two-phase flow can cause instability. He concluded that both plane
phenomenon. The flow velocities approach sonic speed€ouette and Poiseuille flows can become unstable even
in the ring end gaps, where engine oil is entrained in theor small Reynolds numbers [6]. Malik compared
high speed gases. The pressure gradient, and the walhrious numerical methods for the solution of stability
velocity may have opposing effects on the flow directionequations for compressible boundary layers. He
during the compression stroke. Understanding thediscussed both the global and the local eigenvalue
physics of this complex problem would enhance themethods for temporal stability analysis [5]. Hu and
understanding and controlling the entrainment of enginezhong studied the viscous linear stability of supersonic
oil that is later released to the atmosphere as a source @ouette flow using two global methods to solve the
unburned hydrocarbons. It is the aim of this study tolinear stability equation. They used a fourth order finite
understand the parameters leading to flow instability indifference method and a spectral collocation method.
reverse Couette — Poiseuille flows, where the effect ofThey found that two wave modes are unstable at finite
the pressure gradient and velocity at the wall areReynolds number. These modes are acoustic modes
opposite, and the gas velocity approaches sonic speeds.created by sustained acoustic reflections between a wall
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and a relative sonic line when the mean flow inldual
region is supersonic with respect to the wave vedsc
Effects of compressibility, three dimensionalitydamall
cooling on the two wave families are also studiéfl [
Orszag solved the Orr-Sommerfeld equation numéyical
using expansions in Chebyshev polynomials and tRe Q
matrix eigenvalue algorithm. The method was appited
the stability of plane Poiseuille flow and it wasos/n
that results of great accuracy could be obtainey ve
economically. He found the critical Reynolds numbasr
5772.22, reducing all lengths by the half-width tbé
channel and velocities by the undisturbed stream
velocity at the center of the channel [8].

2 Problem Formulation
Under brake conditions of an engine, the pressutbea

intake manifold becomes lower than the crankcase.

When this occurs, lubricating oil is sucked frone th
crankcase through the piston clearances and ripg ga
into the combustion chamber. To understand the
entrainment of oil into the high-speed gas, itésessary
to investigate the instabilities at the oil and gasrface.
The thickness and the velocity of the oil film mogion
the stationary plate are small compared to the-bjmged
gas flow above the oil film and regarding the high
viscosity of oil compared to that of air, the adyéer
behaves like a solid wall as far as the stabilftthe gas
phase is concerned. Therefore, it is possibleéudysthe
stability of the high-speed gas flow only, and iptet
the findings to apply to the gas-oil system.

Although this approach simplifies the problethe
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while the gas stream is flowing in streamwise dicec
and the lower plate stays stationary. The high dpes
flow is viscous with compressibility effects, isrphel

and fully developed. Velocity and temperature peof
are functions of the normal distance to the waly ¢p).

The linearized disturbances are in the form ofdliag

sine waves whose amplification is in time.
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Fig.1. 2D representation of flow geometry and flow

parameters

3.2 Governing Equations of Perturbation Flow
and Linear Stability Analysis

Although considering two-dimensional disturbancas f
the lowest limit of stability is sufficient and ajved

by Squire’'s theorem, three-dimensional form of the
compressible viscous equations of motion is comsitle
in this study, resulting in a more general formiolat
thus allowing conversion to the three dimensional
disturbance case if needed. The linear stability

formulation does not compromise the physics and th%quations are based on a normal mode analysiseof th

omission of the oil layer in the analysis is nopested to
have an effect on the magnitude of critical Reysold
number for the combined plane Couette-Poiseuithevfl
The flow geometry is given in Fig.1. This approash
justified by Ozgen [3] who studied the characterssof
the instability of Newtonian and non-Newtonian i
air system for low speed flows and concluded tbattie
case of air flowing over a thin layer of liquid,etie is
negligible effect of thin liquid layer on the sthiyi of the
two-phase flow provided that the liquid viscosisymuch
higher than the gas viscoisty. The fact that,ekistence
of a thin liquid layer has little contribution thd two-
phase flow instability simplifies and allows the
formulation of the problem for a single layer gk

3 Problem Solution
3.1 Flow Description and Objectives

The aim of the present study is to understand ffieets
of viscosity, temperature, compressibility and dkgns
on the stability of high speed parallel shear flowse
upper wall is moving in reverse streamwise diractio

linearized perturbation equations of the three-
dimensional Navier-Stokes equations. In the normal
mode analysis, small disturbances are resolved into
modes, which may be treated separately because each
satisfies the linear system. The linear stabilltgary
formulas presented in this study are valid for gehe
compressible flows with parallel steady flow field$ie
linear stability is considered for high speed visco
combined plane Couette-Poiseuille flow confined

between finite parallel walls located gt =0 (lower

wall) and y" =h" (upper wall). Each flow variable is

assumed to consist of a mean part and infinitegymal
small perturbations. Utilizing normal mode analy$ie
perturbations are expressed in a Fourier seriege. Th
resulting disturbance equations are linear partial
differential equations in the variablgsy, zandt. The
disturbance equations are linear and the coeftigiare
functions ofy only. Then the separation of variables
using normal modes (i.e., exponential solutiongerms

of the independent variables) resulting in the roady
differential equations can be used. One possibimalo
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mode is the single wave and is excited harmonicaly
in Equation (1).
a(x v, 28) =Q(x,¥,2.t) +§(x,y,zt)
G(x y,zt) =Q(y)e @)

(1)

The complex frequency i&=ac, while the real
part of c is the dimensionless phase spegdand the

imaginary part is the temporal amplification factor.

Disturbances are classified according to normal enod
analysis in which are either amplified; & 0), neutral

(¢, >0), or damped ¢ <0). The wave numbeu. is

real and positive and representedaas 2n/ 1, where
A is the wavelength.

fluctuating terms such asGa—u <<Vu o
ox Ox

neglected. In all the above equations, there &e a

fluctuating components of viscosity and thermal

conductivity which are also functions of temperatas

d_'u'i: , j_ = ﬂ'i: , k = %'F .

daT daT dT

can be

o=

3.3. Method of Normal Modes and Generalized
Eigenvalue Problem

The linear stability analysis is based on normakdeno
analysis of the linearized perturbation equatiohthe
three-dimensional Navier-Stokes equations. In the
normal mode analysis for the linear disturbanchs, t
fluctuations of flow quantities are assumed to be

The Squire theorem states that when the mean flowrepresented by harmonic waves of the following farm

velocities iny — andz — directions are zero, the lowest
value of the critical Reynolds number occurs wifen

0. The equation governing a three-dimensional
oscillation is the same as that of a two-dimendiona
oscillation except the transverse wave numigerand
other terms for the — momentum equation. ¢f andf
are real, the presence Bf acts in a way to effectively
increase the viscosity. In the stability calcuas, two-
dimensional disturbances are considered and the wav
number,f, in z — direction taken to be zero. The set of
equations of motion, continuity, energy, equatidn o
state and Sutherland’s rule of viscosity for vissou
compressible ideal gases in dimensional form aesl us
for the linear stability analysis. Equation (2) egvthe
Sutherland’s law for the viscosity [7].

Hu* :(T* )3/2Too*+Sl*
ﬂm* Too* T*+Sl*

()

In case of parallel flows, the flow parameters
functions of y* only, i.e., u*=u*(y*), w=w*(y*),
T*=T*(y), p=u*(y?), k*=k*(y¥) and normal
component of the mean velocity is zerer=0.
Cartesian coordinate system and the following sgali
factors are used in non-dimensionalization of the
conservation equations. The length scale is taarodl

height, h", velocity scale is the velocity at the upper
moving wallU,. Densityp,, viscosity 4, and

thermal conductivity k;, are all at the reference
temperature of 288 K of upper wall, pressure is

nondimensionalized bw;u;zand the time byh /U, .

All other variables are nondimensionalized by their
corresponding values on the upper wall. The

dimensionless variables are represented by the same

symbol as those used for the dimensional variatles
without the asterisk, *. When compared with theame
flow, the perturbations are small, therefore, qa#dr

three dimensions as:
0.0, 5.7 = [i(y). ¥y, ). py). T(y)|e=== . The
real part of w, represents the frequency of the
disturbance modes while the imaginary part of
represents their temporal amplification rate.
Introducing the perturbation terms into the skt
equations and differentiating with respect to y
constitutes the set of generalized eigenvalue probl
Linear disturbances satisfying all of the eqpret
results in the generalized eigenvalue problem shown
as in Malik [6].

(AD? +BD +C)W, =0, (3)

where W, is the five element vector defined by
G, %,P,T,4)" and A,B and C which are
(6N +Dx(5N +1) matrices of functions of, 8,«,Re

and M,. The disturbance waves are three-

dimensional in general, while two-dimensional
disturbance modes correspond to a special case of
B=0. We are interested in two-dimensional basic
flow, then the velocity componem(y) may be set

to zero. The boundary conditions for Equation (3)
are imposing the isothermal wall temperature at the
upper wall. The lower wall assumes either
isothermal or adiabatic wall boundary conditions.

V=0 W, =W, =Y, =W, =0 or d¥,/dy=0,

y* =h* W, =W, =¥, =%;=0 (4)

Equations (3) and (4) constitute the homogeseo
undary value problem and the main scope is to
determine the relation between the
a,B ,Re,M,, andw that satisfies the system which



Proceedings of the 4th WSEAS International Conference on Fluid Mechanics

constitutes a generalized eigenvalue problem, e th
form of w =w(a, 3,M,,,Re).

4. Numerical Approach
In order to implement a numerical solution, the
computational domaip,, is divided into grids with equal

spacing and the physical properties of the fluigd ar
evaluated at the grid pointsyn- direction. The ¥ order

differential equations are discretized usimgh?) finite

difference formulae. Due to the staggered mes
generation there is no need to have an artificiebgure
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unstable eigenmode exists. The investigation itital
Reynolds numbers and determination of the stable-
unstable regions on the Uwall/Umax-Re map were
generated working on a range of upper moving wall
Mach numbers between 0.0001 to 1.0.

In Fig.2, the critical Re numbers increase stgaab
the velocity ratio increases until the,ddUmax ratio of
roughly 0.1 for all the Mach numbers depicted. @srv
corresponding to I¥kx= 0.1 and 0.3 exibit an almost flat
pehavior for velocity ratios greater than 0.1 ahe t
critical Reynolds numbers remain almost constamt fo

boundary condition on the walls. The three momenturfwai/Umax ratios between 0.15 and 0.45. On the other

and energy equations are written at full nodes.e Th
pressure information for those equations at fulle®is

hand, curves of 0.5, 0.7 and 1.0 are showing agtro
dependence of the critical Reynolds number on the

obtained from the neighboring half nodes at whicHJwai/Umaxratio for the entire range of this parameter.

continuity equation is written. The total number fofi
nodes is N and the total number of half nodes i4.N+
For each full node there are 4 conservation egusimd
1 equation, the continuity, is written at the hatdes.
The total number of equations written at all thele®is

After the velocity ratio of 0.55, the differee
between the channel M= 0.1 and 0.3 curves increases
and the critical Reynolds numbers increase veridhap
with small increments in J4/Umax ratio. While beyond

5N+1. Equation (3) with the boundary conditions inUwal/Uma=0.5, the flow becomes unconditionally stable
Equation (4) represents the 5N+1 equations and 5N+@r the direct flow [2], same condition for the ezse

unknowns to be solved simultaneously. The disagtn
of the governing equations reduces the system to
generalized eigenvalue problem A% =aBY , wherew

is the eigenvalue in the form af = a(c, +ic;) . Real part

of «, Re@), represents the frequency of the disturbanc
modes, while the imaginary parm(w), represents the

temporal amplification rate of disturbances. Téwent W

is the discrete representation of the eigenfunctidrand
B are the square coefficient matrices of the stabili
equations. The matrices are complex and therefoge
composed of real and imaginary submatrices shown
(A, +iA))¥ =a(c, +ic;)(B, +iB;)¥. IMSL and Eispack
QZ algorithms were used for the solution of the
generalized eigenvalue. The double precision cample
subroutines used as solver are DGVLCG and DWRCR
for IMSL libraries.

-

C

5 Results

flow occurs at 1.0. In the same trend, as the oklann
rgaximum Mach number increases, one sees that this
strong stabilization occurs at progressively lower
Uwai/Umaxratios.
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This section reports on the analysis of high speeu

Couette and combined Couette — Poiseuille flowse T
effects of variable viscosity, temperature and dgren

the stability of Modes | and Il for Couette flow can
Mode 0O for Couette — Poiseuille flow are studied
comparing the viscous results at finite Reynoldsibers
with the results reported by Hu and Zhong for plane
Couette flow [4].

5.1 Critical Reynolds and Wave Numbers
The critical Reynolds numberge, is defined as the

smallest value of Reynolds number for which an

Fig. 2. Variation of critical Reynolds number witipper wall
velocity.

It is seen that, increasing the channel maximumhVac
number from incompressible limit (low speed) to hig
speed, the stability of the flow is enhanced. Itamse
that, although increasing the channel maximum Mach
numbers result in a decrease in the upper wall Mach
numbers, they cause an increase in the criticahBldg
numbers.
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Fig. 3 concentrates on the lower values of
Uwall/Umax ratio for the same cases as in Fign2his 0107
range, increasing the maximum Mach number in the _ %%/
channel destabilizes the flow. The most interesting 0087
thing is the intersection of all curves at the eélpratio
of 0.080. Critical Reynolds number at the intetisec

0.07 4

0.06 - Reverse Flow

Dimensionless upper wall velocity.
(U_wall/lu_max)

point is around 22000 for all cases investigatehilSr 0051 | e M.max-01-rev
condition occurs at the velocity ratio of 0.085 ahd 0087 | TR Mmax-03-rev
critical Reynolds numbers is at 26000 for the direc Zzz :__z—max'z'j"ev
B B max - 0.7 -rev
ﬂOW [2] 0.01 4 —#@—M_max- 1.0 - rev
0.10 0.00 j i i i
1.0 1.2 1.4 1.6 1.8 2.0 2.2
= 0.09 4 l Wave Number, a
B 0.08
g o I Fig. 5. Variation of critical wave number with uppeall
‘=§ g 001 } Reverse Flow velocity between U_wall/U_max = 0-0.1.
qégl 0.05 | | —0—M_max-0.1-rev
%?I 0.04 J I —O—M_max-0.3 - rev
§3 0.03 { _—:—_x—max'z-j'fev Fig. 5 concentrates on the results for ve}oqﬂt!os
£ o0 | +M—::z:120::: betwe(_an 0.0 and 0.1, for th(_a_same cases treafed.id.
0.01 | v - For high speed flow, critical Reynolds and wave
0.00 1 : : ‘ ‘ numbers are both smaller than the other cases #teng
5000 15,000 25,000 35000 45,000 curves and also at Jg/Uma=0. Other possible minor
Reynolds Number, Re differences on the overall results between the
incompressible (low speed) results are due to isolut

Fig. 3. Variation of critical Reynolds number witpper wall ’ . .
vegllocity between U wall/U méxzo_o_l_ b method used and the differential equations solved.

_ o » _ Currently, the set of governing equations for hsgieed
In Fig. 4, the variation of critical wave nuemb with o,y  are  solved simultaneously  instead  of

respect to the |/Unmax ratio are illustrated for all the incompressible  Orr—Sommerfeld  equation  and

flow cases. Generally, atush/Unmac=0 limit, for all cases  \; =0.0001 is employed as an incompressible limit for
the critical wave number is around 2.0. high speed flow for the validation.

100 6 Conclusions
L 090+ Reverse Flow In this study, the linear viscous stability
S o080 —o—M_max-01-rev characteristics of high speed Couette and combined
égﬂw —O—M_max- 0.3 rev Couette — Poiseuille flows have been investigated
5 E060 M. max-05-rev numerically. The upper wall moves in reverse dioect
S 2050+ o while the flow between the walls in streamwise
> g —@—M_max - 1.0 - rev
§ 510401 direction. The aim of the study is to see the eftddhe
g 0% reverse flow on the stability compared to the diftmw.
£ 0207 In the combined plane Couette — Poiseuille flowne th
ZZZ | | | new mode, Mode 0, which seems to be a member of
00 05 10 15 20 25 even modes such as Mode Il is the most unstableemod
Wave Number, a High speed stability of channel flow with temperatu
effect is less commonly investigated compared ® th
Fig. 4. Variation of critical wave number with uppeall incompressible isothermal flow. The most significa
velocity. consequence of high speed flow with temperatureceff

is the variation of the temperature and temperature
related viscosity/conductivity profiles in the cimahand
Compared to the curves of related critical Rdgs  the inclusion of the energy equation in the stabili

number for each case, the curves for the wave nignbe analysis. In this study, the effect of compresgibibn
show an important difference: unlike the critical the flow is minimized by setting the channel maximu
Reynolds number curves, the wave number curves ddMach number to 0.1, which corresponds to
not intersect but being closer in the range of sigfo  incompressible flow conditions, rendering the
ratios 0 and 0.1. temperature, viscosity and thermal conductivitystant
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in the channel and results are compared to thenfisd

of Orszag [8] and Ozgen et al [1].

Regarding the cases with compressibility effedts, i

is observed that the effect of compressibility @& t
stabilize the flow. Another noteworthy resultshst the

velocity ratio beyond which unconditional stabitina
occurs increases significantly with increasing viéich
number (from=0.5 in incompressible limit te<1 for
Mwa”:l.O).

As far as the wave numbers are concerned, the
unstable wave number range migrates to smaller wave

number values as the compressibility effect iseased.
longer waves become prone
instabilities, while for incompressible flow, shavaves

This means that

(high wave numbers) could also become unstable.

Nomenclature
Superscripts
* Dimensional quantities
Dimensionless perturbation quantities

Amplitude of dimensionless perturbation quant

- Mean flow quantities

Subscripts
00 Dimensional quantities evaluated at upper
moving wall

w Dimensional quantities evaluated at lower
stationary wall

o] Dimensional mean flow terms
cr Critical values
r Real part of complex quantities

i Imaginary part of complex quantities
Greek Symbols
a Wave number in streamwiseg E a, +ia; )

B Wave number in spanwisef(= 5, +i5)

y Generalized eigenvalue problem eigenvector

P Density, (kg/m3)

H Dynamic viscosity, (kg/ms)

v Kinematic viscosity, (rfis)

k Thermal conductivity, (W/mK)

A Second coefficient of viscosityl = -2/3u

c Complex propagation wave velocity for
temporal stability, ¢ =c, +ic;)

c, Dimensionless phase speed

C Dimensionless temporal amplification factor

w Temporal amplification ratep = a(c, +ic;)

) Viscous heat dissipation
Dimensionless Groups

Re  Reynolds numberRe= p ULh"/ 1L,

Mmax
velocity and temperature,

w  Upper wall Mach numberM,, =U_, /{/)RT,

Pr Prandtl numberPr = z,c, /K.,
Alphanumeric Symbols

M

maximum channel Mach number based on local

ABC  Coefficient matrices of eigenvalue problem
di>  Gas & oil layer thicknessesirf)
Cp Specific heat constant at const pressure, (J/kgK)
g Gravitational accelerationg(=  981/<)
h Dimensional channel height, (m)
N Node number in computational domain
p Pressure, (Pa)
g,Q Velocity, temperature and pressure in linear
stability analysis
R Universal gas constant (R = 287 J/kgK for air)
S Dimensional constant Sutherland’s law
T Temperature , (K)
To_up upper (moving) wall temperatureT,,
to ¢t Time scale, (s)
U,u  Streamwise velocity component, (m/s)
Uw upper (moving) wall velocity U .,
Umax  Maximum velocity in channel,
v Velocity component normal to flow, (m/s)
w Spanwise velocity component, (m/s)
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