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1 Introduction 
The numerical behavior of the unstable (ordinary) 
differential equations is a challenging problem 
especially when the differential equation is non-
linear.  
    Most of the numerical methods (one-step or 
multi-step, [9]) seem to have various computational 
problems in the case of unstable (differential 
equations.  This paper proposes a new methodology 
based on Genetic Algorithms (GA’s) and NM 
(Nelder-Mead Method). 
  In [1], the author gave some ideas for the solution 
of the problem.  It seems that the proposed 
methodology of [1] is good in a variety of ordinary 
differential equations (unstable differential 
equations, delay differential equations, difference-
differential equations, integro-differential equations, 
etc…). In many cases also the computational 
solution is very far from the real  solution or the 
computational solution is absolutely impossible. 

    In [1], we pointed out that we can transform the 
Initial Value Problems and the Boundary Value 
Problems to appropriate minimization problems.  
This minimization problems can be solved by GAs 
and NM as we have shown in [2].  

According to [1], the initial or Boundary Value 
Problems of an ODE or a PDE can be transformed 
as follows:                        . 
1st method: Following the particular variational 
principle we have the equivalent minimization 
problem that can be solved numerically  
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Fig.1:  Solution of ODEs and PDEs via GA plus NM 
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2nd Method:                                                      . 
The finite differences or the finite elements give us 
an algebraic equation or a system of algebraic 
equations. In the Finite Elements method, we refer 
to the Collocation Method or the Galerkin method. 
These algebraic equations can be transformed to an 
equivalent minimization problem . (See Fig.1 as 
well as [1]) 

3rd Method:                          .                                                                 

The finite differences or the finite elements can be 
formulated directly as least squares methods which 
are themselves a minimization problem. (See Fig.1 
as well as [1]) 
 

2 Problem Formulation and Solution 
Before proceeding in the solution of the problem, 
some background on GA (Genetic Algorithms) and 
NM (Nelder-Mead) is necessary. 
In [15], the author has also proposed a hybrid 

method that includes  
a) GA (Genetic Algorithm) for finding rather 

the neiborhood   of the global  minimum than the 
global minimu itself and  
b) NM (Nelder-Mead) algorithm to find the 

exact point of the global minimum itself. 
So, with this Hybrid method of Genetic 

Algorithm + Nelder-Mead we combine the 
advantages of both methods, that are a) the 
convergence to the global minimum (genetic 
algorithm) plus b) the high accuracy of the Nelder-
Mead method. 
If we use only a Genetic Algorithm then we have 

the problem of low accuracy. If we use only Nelder-
Mead, then we have the problem of the possible 
convergence to a local (not to the global) minimum. 
These disadvantages are removed in the case of our 
Hybrid method that combines Genetic Algorithm 
with Nelder-Mead method. See [5]. 
We recall the following definitions from the 

Genetic Algorithms literature: 
Fitness function is the objective function we want to 
minimize.  Population size specifies how many 
individuals there are in each generation. We can use 
various Fitness Scaling Options (rank, proportional, 
top, shift linear, etc…[16]), as well as various 
Selection Options (like Stochastic uniform, 
Remainder, Uniform, Roulette, Tournament)[16].  

Fitness Scaling Options: We can use scaling 
functions. A Scaling function specifies the function 
that performs the scaling. A scaling function 
converts raw fitness scores returned by the fitness 
function to values in a range that is suitable for the 
selection function. We have the following options: 

Rank Scaling Option: scales the raw scores based on 
the rank of each individual, rather than its score. 
The rank of an individual is its position in the sorted 
scores. The rank of the fittest individual is 1, the 
next fittest is 2 and so on. Rank fitness scaling 
removes the effect of the spread of the raw scores. 
Proportional  Scaling Option: The Proportional 
Scaling makes the expectation proportional to the 
raw fitness score. This strategy has weaknesses 
when raw scores are not in a "good" range. Top 
Scaling Option: The Top Scaling scales the 
individuals with the highest fitness values equally. 
Shift linear Scaling Option: The shift linear scaling 
option scales the raw scores so that the expectation 
of the fittest individual is equal to a constant, which 
you can specify as Maximum survival rate, 
multiplied by the average score.  

 
We can have also option in our Reproduction in 
order to determine how the genetic algorithm 
creates children at each new generation. For 
example, Elite Counter specifies the number of 
individuals that are guaranteed to survive to the next 
generation.  
Crossover combines two individuals, or parents, to 
form a new individual, or child, for the next 
generation.  
 

Crossover fraction specifies the fraction of the next 
generation, other than elite individuals, that are 
produced by crossover.   
 
Scattered Crossover:  Scattered Crossover creates a 
random binary vector. It then selects the genes 
where the vector is a 1 from the first parent, and the 
genes where the vector is a 0 from the second 
parent, and combines the genes to form the child.  
 
Mutation: Mutation makes small random changes in 
the individuals in the population, which provide 
genetic diversity and enable the GA to search a 
broader space.  
Gaussian Mutation: We call that the Mutation is 
Gaussian if the Mutation adds a random number to 
each vector entry of an individual. This random 
number is taken from a Gaussian distribution 
centered on zero. The variance of this distribution 
can be controlled with two parameters. The Scale 
parameter determines the variance at the first 
generation. The Shrink parameter controls how 
variance shrinks as generations go by. If the Shrink 
parameter is 0, the variance is constant. If the Shrink 
parameter is 1, the variance shrinks to 0 linearly as 
the last generation is reached. 
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Migration is the movement of individuals between 
subpopulations (the best individuals from one 
subpopulation replace the worst individuals in 
another subpopulation). We can control how 
migration occurs by the following three parameters.  

Direction of Migration: Migration can take place 
in one direction or two. In the so-called “Forward 
migration” the nth subpopulation migrates into the 
(n+1)'th subpopulation. while in the so-called “Both 
directions Migration”, the nth subpopulation 
migrates into both the (n-1)th and the (n+1)th 
subpopulation.  
Migration wraps at the ends of the subpopulations. 
That is, the last subpopulation migrates into the first, 
and the first may migrate into the last. To prevent 
wrapping, specify a subpopulation of size zero.  

Fraction of Migration is the number of the  
individuals that we move between the 
subpopulations. So, Fraction of Migration is the 
fraction of the smaller of the two subpopulations 
that moves. If individuals migrate from a 
subpopulation of 50 individuals into a population of 
100 individuals and Fraction is 0.1, 5 individuals 
(0.1 * 50) migrate. Individuals that migrate from 
one subpopulation to another are copied. They are 
not removed from the source subpopulation. 
Interval of Migration counts how many 
generations pass between migrations. 
 

The Nelder-Mead simplex algorithm appeared in 
1965 and is now one of the most widely used 
methods for nonlinear unconstrained optimization 
[5]÷[8].  The Nelder-Mead method attempts to 
minimize a scalar-valued nonlinear function of n 
real variables using only function values, without 
any derivative information (explicit or implicit). The 
Nelder-Mead method thus falls in the general class 
of direct search methods. The method is described 
as follows: 
Let f(x) be the function for minimization.  

x is a vector in n real variables. We select n+1 initial 
points for x and we follow the steps: 
Step 1. Order. Order the n+1 vertices to satisfy f(x1) 
≤ f(x2) ≤ … ≤ f(xn+1), using the tie-breaking rules 
given below. 
Step 2. Reflect. Compute the reflection point xr from  

11 )1()( ++ −+=−+= nnr xxxxxx ρρρ  , 

where ∑
=

=
n

i

i nxx
1

/  is the centroid of the n best 

points (all vertices except for xn+1). Evaluate fr=f(xr). 

If f1 ≤ fr < fn , accept the reflected point xr and 
terminate the iteration. 
Step 3. Expand. If fr < f1 , calculate the expansion 
point xe, 
 

11 )1()()( ++ −+=−+=−+= nnre xxxxxxxxx ρχρχρχχ

 
and evaluate fe=f(xe). If fe < fr, accept xe and 
terminate the iteration; otherwise (if fe ≥ fr), accept 
xr and terminate the iteration. 
Step 4. Contract. If fr ≥ fn, perform a contraction 
between x  and the better of xn+1 and xr. 
a. Outside. If fn ≤ fr < fn+1 (i.e. xr is strictly better 
than xn+1), perform an outside contraction: calculate 
 

11 )1()()( ++ −+=−+=−+= nnrc xxxxxxxxx ργργγργ

 
and evaluate fc = f(xc). If fc ≤ fr, accept xc and 
terminate the iteration; otherwise, go to step 5 
(perform a shrink). 
b. Inside. If fr ≥ fn+1, perform an inside contraction: 
calculate 
 
 11 )1()( ++ +−=−−= nncc xxxxxx γγγ ,  

 
and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and 
terminate the iteration; otherwise, go to step 5 
(perform a shrink). 
Step 5. Perform a shrink step. Evaluate f at the n 
points vi = x1 + σ (xi – x1), i = 2, … , n+1. The 
(unordered) vertices of the simplex at the next 
iteration consist of x1, v2, … , vn+1. 
 
In this paper we have to solve:   
 
Initial Value Problem of an unstable ODE  
The proposed method is roughly described as 
follows: 
 

• We use discretization using finite elements 

 
• We obtain Algebraic Equations (2nd method 

in Fig.1) 
• From them a Minimization Problem is 

derived 

• Finally we solve this minimization problem 

using Genetic Algorithm + Nelder-Mead 
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3   Examples 

 
Example 3.1 
For the ODE: 

01110 ''' =−− yyy  

The theoretical solution is: tt eCeCty −+= 2
11

1)(  

 
However, the boundary value problem 

01110 ''' =−− yyy  

 1)0( =y  

1)0(' −=y  

has the solution tety −=)(  

The problem with the numerical methods (one-step, 
multi-step etc…) is that the accumulated errors give 

impulse in the “unstable” term te11  and so it is 
impossible to find a numerical solution that will be 

an approximation of the 
tety −=)( . 

So, we will try to solve the boundary value problem 

01110 ''' =−− yyy  

 1)0( =y  

1)0(' −=y  
with discretization using Finite Elements in order 
to reduce the problem to an appropriate 
minimization problem where we can apply GA plus 
NM. 
We consider as a simple Finite Element: 

5432 fttdtctbtay +++++= ε  

Applying  our initial conditions: 

1)0( =y 1)0(' −=y  
we find 

1=a  and 1−=b  
Introducing the solution 

54321 fttdtctty ++++−= ε  

to 01110 ''' =−− yyy  we can demand 

 
)54321(10)201262()( 43232 fttdtctfttdtctR ++++−−+++= εε

0)1(11 5432 =++++−− fttdtctt ε  
at several points, for example 
 ,....5.0,4.0,3.0,2.0,1.0 = = = = = ttttt  
 

So, we demand 
 

0)( =
=nTt

tR  where T=0.1 and n is positive integer, 

we can have n=1,2,…,N (for example N=10) 
So, one must find fdc    ,,, ε  such that 

∑
=

=
N

n

n tR
1

2 0)(min  where =)(tRn nTt
tR

=
)(  

 

This minimization is achieved by using Genetic 
Algorithms (GA) and the method of Nelder-Mead 
exactly as we described previously. We can use the 
MATLAB software package, [8]. 
Our GA has the following Parameters 

 
Population type: Double Vector 
 
Population size: 30 
 
Creation function: Uniform 
 
Fitness scaling: Rank 
 
Selection function: roulette 
 
Reproduction: 6 – Crossover fraction 0.8 
 
Mutation: Gaussian – Scale 1.0, Shrink 1.0 
 
Crossover: Scattered 
 
Migration: Both – fraction 0.2, interval: 20 
 
Stopping criteria: 100 generation 
 

So, we obtain finally: 
 

0084.00416.01667.0,4999.0 −=  =  −=  = fdc ε

 
The result agrees with the theoretical result: 

tety −=)(  
 

 

Example 3.2 
For the ODE: 

0100'' =−y  

The theoretical solution is: tt eCeCty 10
2

10
1)( −+=  

 
However, the boundary value problem 

0100'' =−y  

 1)0( =y  

10)0(' −=y  

has the solution tety 10)( −=  

The problem with the numerical methods (one-step, 
multi-step etc…) is that the accumulated errors give 

impulse in the “unstable” term te10  and so it is 
impossible to find a numerical solution that will be 

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp1-6)



an approximation of the tety 10)( −= . We will 

proceed again with discretization using Finite 
Elements in order to reduce the problem to an 
appropriate minimization problem where we can 
apply GA plus NM. To this end we consider the 
simple Finite Element:  

5432 fttdtctbtay +++++= ε  

We apply our initial conditions 

1)0( =y 10)0(' −=y  
and we find  

1=a  and 10−=b  
Introducing again the solution (as a simple finite 
element) 

5432101 fttdtctty ++++−= ε  

to 0100'' =−y  we demand 

0100)201262()( 32 =−+++= fttdtctR ε  
at several points, for example 
 ,....5.0,4.0,3.0,2.0,1.0 = = = = = ttttt  
So, we demand 
 

0)( =
=nTt

tR  where T=0.1 and n is positive integer, 

we can have n=1,2,…,N (for example N=10) 
So, we must find fdc    ,,, ε  such that 

∑
=

=
N

n

n tR
1

2 0)(min  where =)(tRn nTt
tR

=
)(  

 

In every minimization step, the minimization is 
achieved by using Genetic Algorithms (GA) and the 
method of Nelder-Mead exactly as we described 
previously. We can use the MATLAB software 
package, [8]. 
Our GA has also the following Parameters 

Population type: Double Vector 
Population size: 30 
Creation function: Uniform 
Fitness scaling: Rank 
Selection function: roulette 
Reproduction: 6 – Crossover fraction 0.8 
Mutation: Gaussian – Scale 1.0, Shrink 1.0 
Crossover: Scattered 
Migration: Both – fraction 0.2, interval: 20 
Stopping criteria: 100 generation 
 

We obtain finally: 
 

 =  −=  = 6632.4166666.166,0002.50 εdc  

3333.833−=f  
The result agrees with the theoretical result: 

tety 10)( −=  

 

4   Conclusion 
In this paper, we investigated initial value problems 
of unstable differential equations where the classic 
numerical methods (one-step (like Runge-Kutta), 
multi-step (like Milne-Simpson, Adams-Bashforth-
Moulton)), [9], does not give satisfactory results. 
Summarizing the method of this paper we can say 
that first of all we use discretization using finite 
elements and then we obtain Algebraic Equations. 
From these Algebraic Equations we construct a 
Minimization Problem which is solved using 
Genetic Algorithm + Nelder-Mead. Other recent 
relevant studies can be found in [10], [11], [12]. 
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