
Design and Fabrication of a Programmable 5-DOF Autonomous
Robotic Arm

SAJID GHUFFAR, JAVAID IQBAL, USMAN MEHMOOD and MUHAMMAD ZUBAIR

Department of Mechatronics
 College of Electrical and Mechanical Engineering,
National University of Sciences and Technology,

 Peshawar Road, Rawalpindi,
 PAKISTAN.

sghuffar@yahoo.com , jiqbal-eme@nust.edu.pk, mani_de24@yahoo.com , zubairaw@yahoo.com

Abstract – This paper presents a software architecture required to build a user-friendly interface for a robot
manipulator. For this purpose, during research a prototype 5-DOF robotic arm was built. The end effector of
this robotic arm is a two-fingered gripper. The interface consists of two components generic to most industrial
robot systems present today, first is the teach-pendant and second one is the computer based robot
programming language. The main focus of the project is to develop a Language that provides robot-specific
commands along with the framework common to all high level languages. A user interface has been
developed that provides powerful tools for efficient control of the robot manipulator. The aspiration of this
work is to present a system which is powerful, cost effective and at the same time intelligible to an average
user.

Key-Words: - robotic arm, robot programming language, teach pendant, user interface, AVR microcontroller,
robot kinematics

1 Introduction
Since the dawn of industrial robotics, robot
software architectures and programming languages
have been a topic of great interest [1]. It is
imperative that a user friendly interface is built for
an industrial robot system in order to gain universal
recognition. Hence a lot of work had been done to
develop user friendly interfaces that will at the
same time provide powerful programming
environment [2]. Our research focuses on
developing such an interface, which is easy to use
without compromising on the control that has been
given to the user.
 Biggs and MacDonald in [3] have divided the
robot programming systems into three categories:
automatic programming (learning and programming
by demonstration), manual programming (text and
graphics based programming) and software
architectures (control methodology). Our paper
involves all three categories, the text based
programming, teaching and control methodology.

 The Graphical User Interface (GUI) on the
computer features an Integrated Development
Environment or IDE (also known as the
programmers platform [9]) which allows user to
work both offline and online. While offline, user can
write program routines that will enable robotic am to
perform wide range of tasks, varying from a simple
pick and place job to long term plan oriented tasks.
When online, user can either execute the programs
that have been written previously or teach points to
the robotic arm with the help of a set of buttons
present in the GUI.

 A robot control language defines the actions that
a robot manipulator needs to perform in order to
complete some task [4]. Languages such as VAL [5]
and AML [6] which were developed in seventies are
the earliest examples of structured robot
programming languages. Since that time languages
improved and evolved and as a result a wide variety

of languages were developed. The problem of too
many languages opened the way for using standard
languages such as C for building robot programming
languages. As a result language developers used the
approach of adding libraries to the standard
languages, for instance RCCL [7] and ARCL [4]
used C, while others have used Pascal [8] for this
approach in the past.
 The languages mentioned above might be
difficult for an average user to use. So we have used
the approach of creating a new language that
contains the fundamental elements of a high level
language along with the robot specific commands.
The syntax is made simpler and self explanatory.

 Teach pendant is part of most industrial robot
systems and is used in teaching points and

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp167-173)

mailto:sghuffar@yahoo.com
mailto:jiqbal-eme@nust.edu.pk
mailto:mani_de24@yahoo.com
mailto:zubairaw@yahoo.com

programming of the robot manipulator [10]. The
advantage of teach-pendant over computer is that it
is a small portable box which can be used in places
where setting up a computer might not be feasible.
Our robotic arm is equipped with a teach pendant. It
provides manual control for teaching and a set of
robot commands for the programming of the robot
manipulator.
 The host controller of the system is the Atmel
AVR ATmega8535 [11] controller which directly
controls every motion of the robotic arm. The
electrically erasable, programmable, read-only
memory (EEPROM) of the microcontrollers (teach
pendant’s microcontroller and the ATmega8535) is
used to save all the dynamic data such as the
programs written in the teach pendant and points that
are taught to the robotic arm. This made the robot
more cost and power effective and increased the
autonomy of the system.
 The robot for our system is a 5-DOF robotic arm
whose end effector is two finger hybrid gripper.
This robotic arm is a prototype and low powered
version of an industrial robotic arm. The goal of the
project is to implement a programming system and
prove it using this model.
 Fig.1 shows the overview of the system. It
contains four components robotic arm, host
microcontroller, teach pendant and the PC. These
components are discussed in detail in the next
sections.

Fig.1 - System Architecture

2 The Robotic Manipulator
The robotic arm is 5-DOF which is designed and
analyzed in the related software. Fig.2 shows the
view of 5-DOF robotic arm. The links are made up
of mild steel because of its high strength. The end
effector is two-finger hybrid gripper and can grasp
objects of regular shape with convenience [12]. Link

lengths and workspace for all the joints are given in
table 1.

Table 1: Link lengths and joint workspaces

i Li (cm) θi
o

1 10 -90 to +90
2 40 -10 to +90
3 25 -120 to +120
4 15 -120 to +120
5 Continuous

 All the joints in the structure are revolute
because they are easy to implement and the structure
is not bulky [13]. Three of joints form a planar
manipulator, fourth is the waist for the planar arm
and fifth is the rotation of the gripper. The global
workspace is the set of points (x, y, z, Φ3, Φ4) that
can be reached by the end effector for all specified
orientations Φ3 and Φ4 of the last link and the gripper
respectively.
 24V servomotors have been used to drive each
of the five joints. A gearbox is added to each motor
to reduce the speed and increase the torque. Limit
switches are also mounted on each link to prevent
any motion that goes out of the limits. Limit
switches also provide the hard home position of the
robotic arm.

Fig.2 - View of 5-DOF Robot manipulator

3 The Host Microcontroller
The ATmega8535 controller integrates teach
pendant and the computer with robotic arm. It acts as
the host microcontroller and directly controls all the
motion of the robotic arm.

3.1 Motor Control
ATmega8535 microcontroller is used to implement
PI control algorithms for all the motors. PWM
channels of the microcontroller have been used to
vary the speed and direction of the motors.

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp167-173)

Quadrature encoders have been used for the
feedback, which have two channels output. One
channel is used to measure angle of rotation while
the other is used to measure the direction of rotation.
First channel is connected to the external interrupt of
the controller while the second channel is connected
to the IO port. Limit switches are also directly
connected to the ATmega8535 controller’s IO port.
 We have used single pwm channel for each
motor. Hence to move a motor in both directions a
multiplexer circuit is added between the
microcontroller and the power amplifier circuit. The
component interconnections from the host to the
robotic arm as described above are shown in fig.3.

3.2 Data Storage
When a point is taught to the robotic arm the
encoder counts for all the motors except the gripper
motor are saved in the EEPROM of the
Atmega8535 microcontroller. These encoder counts
determine the position of each motor relative to the
home position.

3.3 Communication
Data transmission between ATmega8535 and teach
pendant or computer takes place through RS232
serial communication protocol.

Fig.3 - Interconnection between host and the
robotic arm

4 Teach Pendant Module
The teach pendant is a small portable hand held
device present in all industrial robot systems. The
function of the teach pendant is teaching points
through manual control and programming of the
robot manipulator that includes taught points and
language commands [10].

4.1 Teach Pendant Architecture
Teach pendant consists of a 2 line by 16 character
liquid crystal display (LCD) and a 20 key keypad in
which most of the keys carry multiple functions. The
microcontroller used in teach-pendant is Atmel AVR
AT90S8515 microcontroller and it communicates
with the host via RS232 protocol.

4.2 Modes of Operation
Teach pendant allows the user to operate in five
modes:

4.2.1 Teach Mode
Teach mode provides the manual control of the
manipulator, which is used to teach points. Twelve
keys are provided in the keypad for motion of all
motors in both the directions. During the teach mode
save and delete keys are used to save and delete
points respectively.
 To teach a point, first the robotic arm is
physically moved to the desired point with the help
of the keys, then the position of each motor is stored
in the host microcontroller in the form of encoder
counts, when the save key is pressed.

4.2.2 Program Mode
Program mode allows the user to write programs
which will be saved in the EEPROM data memory
of the teach pendant’s microcontroller which is
Atmel AVR AT90S8515. All the commands in the
instruction set of the teach pendant have been given
a unique key in the keypad which is pressed to enter
the command.
 .
4.2.3 Run Mode
In this mode the programs that are written in the
program mode are executed. LCD displays the
instruction that is currently executing and the line
number of the instruction in the program. The
program is run online so the robotic arm performs
the tasks as written in the code.

4.2.4 Step Mode
Step mode is quite similar to run mode except that
after each instruction it waits for the user to press a
key in order to execute the next instruction so that
the user can see the effect of each instruction in the
program.

4.2.5 Edit Mode
In this mode programs that have already been
written can be edited. Insert, delete and replace
keys are used to edit the programs.

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp167-173)

5 Software
The robot programming language developed
provides robot-specific commands along with the
framework of a high level language, allowing robot
programmers to use frequent features present in a
common high level programming language rather
than a limited set of robot commands [4]. All the
commands have easy to understand and simple
syntax which reduces the overall complexity of the
system. It allows user to declare variables and to
perform mathematical operations like in any high
level language. The grammar for this robot
programming language has the following notable
features:

1. Main program
2. Multiple Variable Declarations
3. Dynamic Variable Declarations at any
 point in the program
4. Loops
5. Nested loops
6. The If Else Statement
7. Nested If, Else
8. Arithmetic statements

 This robot programming language provides
sufficient tools to the robot programmer for
efficient control of the robotic arm. The program is
fed to an interpreter, which converts the source
code in to an intermediate language, which can be
executed online. The robot control functions of our
programming language are shown in table below.

Table 2: Robot Control Functions

Functions Description
Home Go to the Home position
Go() Move to the point in x-y-z space

Motor() Move the specified motor in the
direction specified

Gripper() Open or Close the Gripper
Point() Go to point taught through the

manual control

5.1 Graphical User Interface
The graphical user interface is designed in the C# as
shown in fig.4. The GUI features two portions, first
is the IDE and second portion contains a set of
buttons for the manual control of the robotic arm
which is used to teach points. Help and sample
programs are added in the IDE to facilitate the user.
User can develop programs in the IDE without
connecting to the robotic arm i.e. from any remote

place. These programs can be executed when the PC
is connected to the robotic arm. Delete and save
buttons are provided in the GUI to save and delete
the points.

Fig.4 - View of Graphical User Interface

 5.2 Synchronization
Since the computer program runs ahead of the real-
time destination of the robot, the computer and the
host must be synchronized [4]. To synchronize the
systems, the computer program waits for the host to
verify that the destination point has been reached,
before moving ahead. So after execution of every
robot command ATmega8535 controller sends a
verification number to tell the teach pendant or the
computer that the destination has been reached.

5.3 Gripper Control
A robotic arm must be able to interact with the
objects in the surroundings to become useful [4]. For
pick and place jobs gripper is used. The language
command for the control of gripper is gripper ().

 gripper (GRIPPER_OPEN)
 gripper (GRIPPER_CLOSE)

5.4 Robot Kinematics
The programming language has following two types
of robot kinematics functions.

5.4.1 Forward kinematics
Forward kinematics involves computing the position
of the end-effector when inputs are the joint angles
and geometric link parameters [4, 14]. Following
equations are used to find the position of the end-
effector when joint angles are known.

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp167-173)

() 11 coscos)cos(coscos 432322 θφθθθθ lllx +++= .. (1)

() 11 sincos)cos(cossin 432322 θφθθθθ llly +++= .. (2)

φθθθ sin)sin(sin 432322 lllz ++−−= ………… (3)

 Where θ 1, θ 2, θ 3, θ 4, are the joint angles as
shown in the fig.5 and x, y and z are the spatial
coordinates of the end-effector relative to the base
of the robot [14]. The length of the first link is
assumed to be zero in both the forward kinematics
and inverse kinematics equations. The angle PHI(φ)
gives the orientation of the last link according to
horizontal axis. Link lengths l2, l3 and l4 are given in
table 1. The language function that relates to
forward kinematics is:

motor(MOTOR_NAME, ANGLE)

 This function does not necessarily need to apply
the forward kinematics equations to find the
position of end effector because the joint angles can
be directly converted to the encoder counts and
transmitted to the host. The forward kinematics
equations can be used to keep track of the position
of the end effector in form of spatial coordinates.

Fig. 5 - Kinematics of Robotic Arm

5.4.2 Inverse Kinematics
Given the geometric link parameters and the desired
end-effector position and orientation relative to the
base, computing the joint angles of the manipulator
is known as inverse kinematics [4, 14]. The inverse
kinematics equations depend on the link
configuration of the manipulator, for our type of
manipulator as shown in fig.5 these equations are as
follows:

 …..……………. (4) (xy CC , tan 1

1
−=θ

()33233

1

221
2

cos ,sintan

 ,tan

θθ

θ

lll

CCC yxz

+

−⎟
⎠
⎞

⎜
⎝
⎛ +−=

−

−
………. (5)

Where,
32

2
3

2
2

222

3 2
cos

ll
llCCC zyx −−++

=θ

 ⎟

⎠
⎞

⎜
⎝
⎛ −= −

33
21

3 cos,cos1tan θθθ ……… (6)

 324 θθθ −−= PHI …………………... (7)

 Where Cx, Cy and Cz are the x, y and z
coordinates of the end point of third link relative to
the base of the robot [14]. The language command
that involves inverse kinematics is:

go(POINT_X, POINT_Y, POINT_Z, PHI)

 The joint angles found by applying the
inverse kinematics equations are converted to
encoder counts and then transmitted to the host.

5.5 Teaching
One of the most important feature of industrial
robots is the teaching of points through manual
control. Usually the manual control is only
provided in the teach pendant. The software
developed on the computer gives the capability of
teaching points from the computer as well. All
taught points are saved in the EEPROM of the
microcontroller Atmega8535 that controls the
robotic arm. In Fig. 4 the right portion of the GUI
shows the buttons for the manual control and for
saving and deleting points from the computer. The
language command that performs the function of
reaching a taught points is:

point(POINT_NAME)

6 Results
Teach pendant interface and the computer based
language had been successfully tested on the
robotic arm. To test the intelligibility of the system,
robotic arm was operated by some novice users
who found it very easy to learn and use.
 Very high encoder resolution of the motors
and good mechanical structure resulted in a high
degree of accuracy and repeatability. The EEPROM
of the microcontrollers was used for storing
dynamic data such as programs written in the teach)

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp167-173)

pendant and the points saved in the Atmega8535
controller this eliminated the need for a battery
backup and made the robotic arm more power and
cost effective.
 The arm was successfully programmed to
reach and carry loads up to 3kg with a high degree
of repeatability. Handshaking was implemented on
the serial interfaces between Atmega8535
microcontroller, the host computer and the teach
pendant that made the communication secure and
extremely reliable at all times.

7 Conclusions and Future Work
The interface developed is powerful tool for
controlling the robotic arm. Software has been
designed in such a way to make it more user-
friendly and understandable. The language has very
easy to understand concise, clear and self
explanatory syntax. Industrial robot systems are
vital for the advancement of the industries, the
techniques and the ideas mentioned in the paper can
help to further increase the quality of these robot
systems.
 Modern robot systems provide graphical
simulation and virtual environment [15,16] for
programming of robots. Our system can be
enhanced to include these facilities. Vision is one of
the most important feature of the industrial robot
systems present today. For this purpose a pair of
cameras can be attached to the robotic arm, which
will allow robot to automatically identify and grasp
the objects.
 Imitation based learning capability can be
added to the robotic arm, which will allow path
tracking by a different technique. The instruction
set for the language and the teach pendant can be
enhanced to include vision, forces, torques,
imitation etc. The communication from the host can
be made wireless this will allow programming and
teaching from a remote location and would create a
lot of other applications for this robotic arm.

References:
[1] I. Pembeci and G. Hager, A Comparative

Review of Robot Programming Languages,
Technical Report CIRL, Johns Hopkins
University, august 14, 2001

[2] F. M. Wahl and U. Thomas, Robot Programming
– From simple Moves to Complex Robot Tasks,
Proceedings of the First International
Colloquium 'Collaborative Research Centre 562
- Robotic Systems for Modeling and Assembly',

Braunschweig, Germany, May 2002, pp. 245-
259.

[3] G. Biggs and B. MacDonald, A Survey of Robot
Programming Systems, Proceedings of the
Australasian Conference on Robotics and
Automation, Brisbane, Australia, 2003.

[4] P. I. Corke and R. J. Kirkham, The ARCL Robot
Programming System, Proceedings of
International Conference of Australian Robot
Association, Brisbane, July 1993, pp. 484-493.

[5] B. E. Shimano, VAL: A Versatile Robot
Programming and Control System, COMPSAC
79, 1979.

[6] R. H. Taylor, P. D. Summers, and J. M. Meyer,
AML: A Manufacturing Language, International
Journal Robotics Research, Vol. 1, No. 3, 1982,
pp 3-18.

[7] V. Hayward and R. P. Paul, Robot Manipulator
Control under UNIX - RCCL: a Robot Control C
Library, International Journal of Robotics
Research, Vol.6, No.4, 1986, pp 94–111.

[8] C. Blume and W. Jakob, PasRo-PASCAL for
Robot, Springer-Verlag, 1985.

[9] Robert Lafore, Turbo C Programming for the
PC, revised edition, Waite Group Inc., 1999.

[10] RHINO ROBOTS INC. Introduction to
Robotics Mark 1V controller and XR-3 or XR-4
Robot Arm, 1995.

[11] www.Atmel.com last accessed on April 2006
[12] J. Iqbal, N. Hassan, A. Waqar, S. Bano and R.

Ilyas, Fabrication and Control of 4-DOF,
Autonomous Robotic Arm Using Low Cost AVR
Controller, Proceedings of the International
DARH conference, Yverdon-les-Bains,
Switzerland, 2005.

[13] M. Adeel, J. Iqbal, M. Ali, R. Asif, S. Mumtaz,
Design, Control and Implementation of a Light
Weight 5-DOF Robotic Arm using a Low-Cost
Microcontroller via Radio LAN, Proceedings of
the International ACIAR conference, Bangkok,
Thailand, 2005.

 [14] John. J. Craig, Introduction to Robotics,
Mechanics and Control, 2nd Edition, Addison-
Wesley, 1999.

[15] Murphy R.R. and Rogers E., Introduction to the
Special Issue on Human Robot Interaction, IEEE
Trans. Syst. Man, Cybern, Vol. 34, No. 2, May
2004, pp. 101-102.

[16] J. Aleotti, S. Caselli, and M. Reggiani,
Evaluation of virtual fixtures for a robot
programming by demonstration interface, IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans,
Vol. 35, No. 4, Jul. 2005, pp. 536–545.

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp167-173)

	Abstract – This paper presents a software architecture required to build a user-friendly interface for a robot manipulator. For this purpose, during research a prototype 5-DOF robotic arm was built. The end effector of this robotic arm is a two-fingered gripper. The interface consists of two components generic to most industrial robot systems present today, first is the teach-pendant and second one is the computer based robot programming language. The main focus of the project is to develop a Language that provides robot-specific commands along with the framework common to all high level languages. A user interface has been developed that provides powerful tools for efficient control of the robot manipulator. The aspiration of this work is to present a system which is powerful, cost effective and at the same time intelligible to an average user.
	Functions
	Description
	5.1 Graphical User Interface

	5.3 Gripper Control
	5.4 Robot Kinematics
	The programming language has following two types of robot kinematics functions.
	5.4.1 Forward kinematics
	Forward kinematics involves computing the position of the end-effector when inputs are the joint angles and geometric link parameters [4, 14]. Following equations are used to find the position of the end-effector when joint angles are known.
	 .. (1)
	 .. (2)
	 ………… (3)
	 Where θ 1, θ 2, θ 3, θ 4, are the joint angles as shown in the fig.5 and x, y and z are the spatial coordinates of the end-effector relative to the base of the robot [14]. The length of the first link is assumed to be zero in both the forward kinematics and inverse kinematics equations. The angle PHI(() gives the orientation of the last link according to horizontal axis. Link lengths l2, l3 and l4 are given in table 1. The language function that relates to forward kinematics is:
	5.5 Teaching
	7 Conclusions and Future Work

