
Communication Gaps and Requirements Uncertainties in the Information

Systems Design

DENISS KUMLANDER

Department of Informatics

Tallinn University of Technology

Raja St.15, 12617 Tallinn

ESTONIA

kumlander@gmail.com

Abstract: - The information systems engineering technologies and requirements gathering techniques are evolving on

the permanent base. This evolution highlights some issues that were hidden so far or appeared with new techniques. In

this paper we review requirements formulating and information system design problems produced by communication

gaps, and uncertainty of requirements. Sources of those problems are described and some guidelines are proposed on

avoiding or dealing with those problems. A “supporting” design and collaborative teams are proposed to stabilise

requirements and construct information systems with less mis-modelling and mistakes.

Key-Words: - Software design, communication gaps, uncertain requirements

1 Introduction
The ultimate goal of developing information systems is

to provide customers with tools that will help them run

their business in a better way. Nowadays increasing

competition and globalisation of business demands much

higher quality of the released software, much shorter

development cycle and increased flexibility of defining

requirements. The proper software implementation over

the low quality one provides benefits for both projects

sides. A customer benefits due running their business

properly and hopefully having certain advantages over

their competitors. A project team has in the result a

better image. Both sides benefit from saving a lot of

resources because of decreasing the number of rebuilds

and changes.

 There are different modern methodologies supporting

the process of achieving the described goals, capturing

real requirements and providing a correct design

including automated design check verification from a

“programming” point of view [2, 6]. At the same time

real software projects still demonstrate results that are far

from our expectations. Main reasons of that are

uncertainty of requirements and communication gaps.

Requirements uncertainty is caused by quickly changing

business world, wrong initial propositions of a person

formulating requirements on what she or he would like

to see in the result and many other sources.

Communication gaps - by inability to describe and

provide information on what a person is sure about.

 In this paper all our previous researches in fields of

analysing gaps and addressing uncertain requirements in

the software engineering [4, 5] are concentrated and

applied to the information systems engineering field.

First of all high real approaches to information systems’

design are reviewed in the chapter 2. The next two

chapters describe communication gaps and requirements

uncertainty. Thereafter ways to deal with those problems

are presented in the chapter 5. The proposed techniques

were applied in several companies and one of those is

presented in the chapter 6 as a case review. The last

section concludes the paper.

2 High Level Design Approaches
There are two main approaches in the design and

requirements defining field used so far. The first

approach bases on an assumption that software

companies and their designers know much better what a

customer needs and therefore could contact the customer

and come up with a solution. This approach is also

known as a consulting. The second one is opposite –

information systems are built using only functional

specifications provided by customers, although a

software company can assist in formalising customers’

requirements. This approach means that information

system design will not be started until all documents and

requirements are provided and all questions are

answered. Questions occurring during the design phase

of a project are also answered by customers. In both

cases a set of documents and models are built and

verified together with customers. Unfortunately many

projects show that neither of those approaches can be

applied without having certain problems. The real truth

lies somewhere in between: it is always good to demand

customers to provide as exact information as possible,

but it is also hard to require customers to be designers.

Main problems here can be the following: customers

usually do not have necessary skills and hardly

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp400-405)

understand any case diagrams that designers can

produce. Such difference in skills, knowledge and

stereotypes can be a source of misunderstandings or

communication gaps. Besides, practically each software

designer used to work with uncertain requirements.

Under uncertain requirements we mean requirements,

which are changed during the design stage or after this

stage is finished and a project is moved to the

implementation phase. Sometimes designers try to fix

requirements and do not accept any later changes, but

this approach is rather wrong in many cases from our

point of view. An information systems’ design is made

not because of the design, but to anticipate customers’

needs. From another point of view it is impossible to

redesign a product on a permanent base and especially if

a product is on the final stage. That’s why we are going

to propose a new approach to information systems

design and requirements collecting for cases where

requirements are uncertain.

3 Communication Gaps
A communication gap is a term indicating the

transformation of information during a communication.

Basically it means that information, which is sent, is not

equal to the received one after transmission. Mainly we

concentrate here on the communication between persons

and do not mean corruption of information in the

communication channels like emails, mails etc. There

are different reasons of distortion and main are listed

below.

 One reason is a physical distance between a customer

workplace and a designer workplace. The designer in

this situation cannot just walk to the customer office,

talk face-to-face and ask to review the design / gathered

requirements or do other things the designer needs to be

done. Besides such a distance force them also to

communicate in a “none-visual” manner that usually

makes a communication between two different people

much more problematic. It is also hard to organize

“enough” meetings with customers as they are usually

occupied with their business.

 Another sources of gaps come from a generally

problem of communication between any two persons

that are explained by a difference in experience, skills,

available information, life’s and work’s environments

and culture backgrounds. This problem can be seen

especially during interviews etc, when interviewer can

miss important information, can miss an area to ask

about the customer have not explained enough etc.

 Another common problem is presenting a model in a

form, which is unfamiliar to customers who have to

verify that. This can be seen as a sub-reason of the

previous group, but we rather exclude it from the

previous part as it is very important and is connected to

the modelling rather than to experience and so forth.

 So far we have identified the next “communication”

problems that can arise while designing an information

system and gathering requirements:

• Impossibility to do/force to do something if it is

needed;

• Insufficient quantity/quality of models/design

reviews;

• Loss of information during a communication because

of different experience, available information and so

forth

• Inability to explaining fully the received requirement

basing on “computer” models, i.e. models the

customer is not familiar to work with.

 All those reasons cause a certain probability that the

information system will not correspond to requirements

in the end of the project.

4 Uncertain Requirements
In this part of the paper we are going to review sources

of uncertain requirements, classify those and identify

why those exist.

 Today movement and changing of information in

business becomes faster and faster. That’s why it is

practically impossible to collect all information a

customer may need before designing the information

system that should assist in their everyday operations. It

becomes normal that requirements can be a subject of

change already on the project starting stage and this

knowledge should be addressed in the project and

requirements processing. There are two major types of

changes. The first type is expected changes, i.e. when we

know that something new can appear soon and it has to

be addressed already now in the future software. Another

type is unexpected changes, which can be sub-divided

into internal or external changes. Internal unexpected

changes are those that are caused by incorrect

information in the requirements of a project. This could

include wrong definitions, descriptions or even ideas of

how it should work. Some of them cannot be identified

by reviewing models or case diagrams. External

unexpected changes are changes that come from an

environment where software is designed or has to work.

The environment includes both business environment of

customers and a customers’ internal environment. First

of all we mean here changes that cannot be foreseen

basing on reviewing requirements, reviewing software

made by those requirements or experience of project

team members. So, those changes are external from the

project point of view. Another possible cause of

requirements’ changes during a project could be a need

to quickly and adequately react on changes in the

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp400-405)

business world. Companies need to be flexible to remain

competitive. Global markets are much more demanding

and much quicker changing – all this will be also a

challenge for a software design and should be classified

as uncertain requirements that need corresponding

methods to address in software design.

 A specific problem for designing information systems

comes from necessary to anticipate needs of a range of

users having totally different requirements and views on

the system. Usually users describe during an interview

only his part and it becomes a challenge to obtain a full

picture from those pieces of information. Sometimes

those descriptions are in a conflict with each other. The

only person that can resolve such conflict is a top-

manager of both sides, but his availability is very limited

usually therefore the question which side’s requirement

to fulfil can produce an uncertainty again.

 Potentially dangerous can be a pure requirements’

documentation that leaves enough space for

misinterpretations. Both sides can try to benefit from it,

but usually it will lead to a conflict that nobody would

like to have. This will also increase a risk of un-

satisfiability of the result.

 Notice that communication gaps described earlier are

also leading to uncertain requirements.

Reconciliation of uncertainty sources

• Missed information:

o Requirements includes only individual opinions

of users and do not provide a full picture;

o Requirements are initially subject to change:

since the customer doesn’t have enough

information at the moment, but will after some

time; there is a high risk that requirements will

have to be adjusted; the customer can foresee

with some probability what part of requirements

will be adjusted;

o Unexpected changes – external changes: the

customer would like to receive more than s\he

originally planned because of changes in the

environment;

o Pure documentation;

• Errors

o Unexpected changes – internal changes:

Customer can find that his original ideas do not

correspond to what he would like to have and

will change his mind. It is a common case if sale

persons who are weak in the formal thinking

formulate requirements;

o Error because of communication gaps like

information loss, pure communication, inability

to review design or model, inability of

customers to provide a full information etc.

 Needs to change requirements because of errors can

arise on any project stage, but tend to not be discovered

until the project end in many cases. The last fact

generated a lot of jokes and funny pictures showing a

huge difference between what was asked and what was

delivered.

5 Ways to Address Communication

Gaps and Requirements Uncertainty
It is impossible nowadays to define requirements purely

inside a software company or to have complete and

detailed requirements specifications from a customer.

The first case is unacceptable by customers since often

they want software companies or software departments

to meet their needs, since software are made for them.

The last software design method cannot be used

nowadays because of requirements uncertainty, which

we had described in the previous chapter. Besides

software people have a lot of experience in technical

details and similar projects and could help a lot to

formulate requirements and functional specifications

“right”. The first part of this chapter addresses

communication gaps problem that need to be resolved

before the uncertainty can be processed. Of course each

case of gathering requirements, designing and working

with customers differs from others, therefore not all of

the listed below advices can be used directly, but

applying most of those will increase the quality of the

result information system a lot.

 The following principles can be used to avoid

communication gaps:

• A person that is responsible for the project on the

customer site has to be defined;

 Information systems are usually built for external

customers and sometimes it is hard to contact them. It is

even harder to make somebody to review anything if

your workplace locates somewhere else. Therefore a

special person that is responsible for the project is

needed at the customer site. All questions can be

forwarded to this person and processed by him. This is

the person that moves the project forward and is a

customer representative. Notice that this person should

be both responsible and interesting in the project. There

should be some amount of reserved time that he or she

can spend on the project, so other business

responsibilities will not interfere.

• “Useful” meetings with the customer have to be

established. Those should be well prepared and have

a good timing (consider different time zones);

• Define rules, good practices, processes in the

requirements gathering and models reviewing with

customers as clear and simple as possible;

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp400-405)

• Force to underwrite requirements documents and

models/design documents – especially your variant.

 The designer has to ensure that his document has

been read, hopefully understood and accepted. It will

secure his future work since customers tend to skip

reviewing phase and this responsibility can make them

review gathered requirements and built models. It can be

useful to “play” through information systems’ scenarios

and cases.

• Iterational development, shorter development circles

[1, 7] should be used;

 It is highly advisable to divide an information system

construction project into a set of steps/iterations. An

output of each development iteration is a part of

information system (iteration’s features) ready to be

used. The main reason of dividing into iteration: a model

that looks correctly at the beginning could not be so

obvious at the end due uncertain requirements and

hidden issue that can be detected only using a fully

functional system. Customers and the product team fill

much more comfortable in the iterational development

situation since they have a better view on the work

progress. It is important to synchronize customers’

ability to review and the production cycle. Ideally each

reviewed part of the information system should go live.

This requires a decision on how the information system

will be run, will it replace an old one (if any exist) or

will be run in parallel etc.

 It is possible to address uncertainty of the

requirements after the communication gaps are avoided

and stable requirements are defined. Today the

information system’s engineers and their customers have

to be flexible. The uncertain requirements problem arises

more and more with this flexibility and we need to

transform it into an opportunity. In this paper a

collaborative team and the supported software

engineering [5] are proposed to be used if uncertain

requirements exist. The supporting engineering principle

defines that the design should help (support) a process of

formulating requirements, i.e. requirements that will be

in the result both correct and correspond to real

customers’ needs, instead of being just after

requirements are gathered. It as an excellent way:

• for customers and designers to collaborate in a better

way;

• to decrease number of mistakes and make

requirements less uncertain on early stages;

• to address uncertainty directly in a project; keep them

in mind and leave enough space for later changes.

 The supporting design should help to find and

provide to the design stage all information and

requirements from customers including information on

the requirements uncertainty; use design as an additional

tool in formulating requirements etc.

 As it was described above, the information system

should be designed so that it will be possible to release

the product in series of steps and those steps should be

synchronised with customers’ ability to review and

accept the system. A plan should contain features that

are under a question because of the information lack as

well by postponing those features to last steps. The plan

that still considers features that are postponed helps to

design first steps / features so that adding postponed

features will not be a big challenge and will not require

rebuilding of the entire information system. A possibility

to start using a product starting from first releases will

show disadvantages of the design and mistakes of

requirements that could be still addressed until the

project end and potentially can gain additional benefits

to customers in case their old system is too bad or does

not exist at all. Notice that reviewing prototypes or steps

with customers helps to create the collaborative team.

 Another important principle of the supporting design

is to use documents that will simplifier discussion of

different issues with customers, who do not have any

special knowledge about UML, designing databases,

case models and so forth. The design document should

contain as many parts that can be reviewed together with

users as possible. For example, it could be modelling a

user interface basing on visual information like pictures

or other UI prototypes [3]. Today too much documents

are generated, which are irrelevant or is hard to

understand. Such documents can neither be verified with

customers nor developers will use as documents are too

complicated. Besides we will not suggest having two

different documents – one for customers and another for

internal use with a lot of design details. There could be a

problem to synchronise those as design models can raise

questions about requirements that could be reviewed

with customers. There should be an easy way to state

question and incorporate answers into models again.

Notice again that the design documentation is a base for

collaborating between customers and designers.

 Principles described so far should be supported by

certain infrastructure. None formal reviewing process of

documents and implemented steps needs to be

established. Notice that perfectly formulated

requirements documentation and iterational development

of the information system provide just a possibility to

avoid mistakes on early stages. The reviewing process is

a process converting this possibility into reality. The

biggest risk here is a “formal” reviewing, i.e. a review

without having it really done.

 The described approach to the information systems

requirements gathering and design can be applied to a

variety of cases where communication gaps and

requirements uncertainty exist. The approach can be

combined with other approaches and is an additional

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp400-405)

approach to major information system modelling

techniques existing nowadays.

6 Case Review
The proposed approach has been adopted in several

companies we were working for. The overall idea and

requirements uncertainty problem came from those

companies and motivated us to find a solution. One

typical company will be described below to give an

overview on how the approach is applied.

 The company is a big global one developing

hardware, software, providing telecommunication

services and many others. We have been working for a

department producing software components. This

department is divided into several branches located in

different countries. The overall number of workers is

around 50 including developers, software designers and

some consultants working with customers. A project we

started to work with was very good illustration of what

was happening in the department before. The marketing

team decided right before a major release that a new

functionality should be added into that as soon as

possible. It resulted in developing the functionality that

was not stable, i.e. that was developing in parallel. There

were a functional specification developed by the

business analyst and a design document, basing on

which developers were working. Those documents were

done rather despite of each other, since the design

document sometimes contained parts that the business

analyst wasn’t thinking about, but developers have found

and vice versa – the requirements document contained

some thought that were not reflected in the design

document. Sometimes the specification update was

forced by the design document.

 The following symptoms were discovered in that

company in a lot of projects:

• Software has to be developed by requirements

developed in parallel;

• Company should be flexible enough to allow that;

• Some requirements have been driven by the

development team that do the “what-if” analysis

during the development process;

• Two documents on the project exist, but neither

accurately reflects actual requirements, design and

current project status and therefore cannot be used

directly for the specification underwriting without a

time consuming synchronisation efforts.

 The supporting design principle described in this

article was the best way from our point of view to avoid

failing for the project, anticipate the way they were

already trying to work and even increase standard

efficiency of the development process. A specification

formulated quickly usually contains a lot of uncovered

issues. The quick development arise those question

making sometimes the design document to be better that

the specification, especially when those questions are

quickly answered online by the marketing/consultants

team. In other words some answers appear quicker in the

design document than in the specification one. The

development team drives formulation of the

specifications in this case because they need answers

quickly, because they find problems and therefore this

team supports the requirements stabilisation process a

lot. The synergy between the business analysts’ team and

the design and development team was really sufficient

and it moved projects forward dramatically.

 The iterational development were adopted as the only

way to see practically in the real-time how the

functionality is done, test it and basing on it identify

potential problems and unanswered questions. Notice

that in some projects each iteration step was done during

several weeks or even days, which is much less than in

the agility development process. So small iterations

worked perfectly for a functionality that is about to be

added into the project in a hurry right before a version is

released. It was the only efficient way to fulfil the

requirements and release the version in the predefined

time frame.

 Another important element we used was meetings

with customers to verify the developed functionality.

This address the problem of uncertainty, i.e. how the

functionality should be done as even consultants are not

quite sure sometimes about how it will be used. Notice

that this was possible only because of applying the

iterational development described before. Such meetings

saved a lot of time in formulating requirements and

made possible to release a lot of projects in time. Unlike

a common vision that customers are not fond of

spending their time on reviewing projects in

development we have found that they are. Mostly it is

explained by the fact that they see it as a possibility to

affect the project on early stages and ensure that the

future versions will perfectly match their needs.

 Besides the designer of the development team was

forced to write all answers and rewrite specifications in

his own language and submit it back to the business

analyst working with this project. It was done to

minimise a number of errors in the design and worked

very well. It was even surprisingly how many parts of

the requirements that look to be clear can be understood

in another way. Notice that it was not said “wrongly”

since verification of those mistakes demonstrated that

requirements often contained improper formulations that

were understood differently by different backgrounds’

persons.

 The last but not least element that was applied was

defining a person that is responsible for a project.

Consider that each project usually involves 3-4

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp400-405)

