
          
 

 

 
Abstract: - The purpose of this paper is to develop land vehicle navigation and traffic flow monitoring and a 
control system which is composed of Global Positioning System receivers and RF beacon communication. The 
GPS receivers and the other sensors detect the position, velocity, density, and flow rate of the vehicles on a 
freeway. By collecting these data and transmitting them to a monitor control station, called the center of 
dispatch, the vehicle traffic can be controlled and traffic congestion can be avoided. Two algorithms are 
developed for the GPS vehicle traffic flow controller which can estimate the velocity, density and traffic flow of 
the vehicles in order to ascertain whether the traffic is stable, critical stable or unstable. A backpropagation 
algorithm feedforward neural network approach is provided which has achieved high efficiency. The 
probabilistic decision base neural network approach selected to classify the stability of the traffic system got the 
some results as the feedforward neural network approach. An experiment showed that this system can solve 
traffic problems. 

 
Key-Words: Global Positioning System (GPS), Feedforward Neural Network, Backpropagation Algorithm, 
Probabilistic Decision Base Neural Network (PDBNN).

1 Introduction 

In the near future, as GPS receivers can be 
purchased at a low cost, more users will select them 
for navigation positioning. It is very convenient to 
install this equipment on a vehicle, and it not only 
obtains the position, velocity and heading of the 
vehicle, but can also be combined with an audio 
system and electronic mapping that can provide more 
information to accomplish driver-controlled 
navigation. The paper describes how the GPS 
receivers on the vehicles can obtain navigation 
messages and how these can be transmitted to a 
central dispatch by RF beacon. The monitor control 
dispatch center processes the data transmitted from 
each vehicle. The data contain the meteorological 
conditions, the presence of messages about accidents, 
matter pertaining to civil engineering works, and so 
on, and provide the users with real time information 

which can predict the time of arrival in order to avoid 
collision. The center of dispatch also estimates the 
density and traffic flow of the vehicles and ascertains 
whether the traffic is busy or not, to let the driver 
decide whether to take the freeway or not in order to 
avoid congestion on the freeway. The function of the 
whole system is shown in Figure 1. 

A number of papers have been discussing related 
subjects. M. Papageorgion et al. described a neural 
network approach to freeway network traffic control 
speed [1]. L. Florio and L. Mussone setup neural 
network models for classification and forecasting 
freeway traffic flow stability [3]. M. G. Quinn 
presented a highway agency model for traffic 
management [4]. In addition, a number of papers 
explored air traffic management [2, 5~14]. None of 
these papers above, however, has discussed how to 
use GPS receivers to get relevant traffic data. In this 
paper, we in particular consider the use of GPS 
receivers to obtain navigation messages and send 
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them to a central dispatch. The central dispatch 
combines these messages with other information, 
ascertains the level of stability of the traffic system, 
and predicts speed flow and the arrival time, to 
provide the user with a reference for making a 
decision whether to take the freeway or not. 

 
This paper aims at setting up a real time 

kinematic GPS positioning and attitude determination 
algorithm using a single frequency L1 carrier phase 
double difference measurement equation, and the 
extended Kalman filter method to resolve the 
real-time positioning and the attitude of the navigator. 
Section 2 describes a theoretical derivation of KGPS 
positioning. Section 3 demonstrates how by using 
the attitude determination algorithm the attitude of 
navigator can be found. In Section 4, the extended 
Kalman filter approach is explained. Experimental 
results and discussion are described in Section 5. 
Section 6 presents some conclusions. 

2 Message Collecting and System 

Description 
First, the GPS navigation data, the vehicular 

position, velocity and heading / attitude, are collected. 
Then, the data related to the traffic conditions, 
messages about accidents, traffic obstacles, 
particularly busy traffic, highway management, 
signals light failure, and road work are obtained by a 
fix/moving sensor station. Finally, the messages 
about meteorological conditions like brightness, 
velocity, fog, rain or snow are obtained. 

These three kinds of data are sent to the vehicle 
dispatch center by radio. An artificial neural network 
algorithm is used to estimate the flow, the speed and 
vehicle density and to ascertain whether the traffic is 
stable or not, and even to predict the time of arrival. 
The results are sent to the users in real time by radio 
for reference, to provide them with a criterion 
whether to increase or reduce speed or whether to 
take the freeway or not. 

At present on Taiwan’s Freeway No.1 and No.2 
the vehicular flow, the heavy load and the speed 

average data are collected every five minutes. From 
these we can easily obtain the vehicular flow, heavy 
load percentage and flow density data per hour. We 
think the dynamic model of traffic must have some 
relationship with the vehicular flow and density. But 
the relationship cannot be expressed by a concept 
formula or by a statistic linear approach. This paper 
attempts to set up a relationship with the artificial 
neural network. Figure 2 shows the backpropagation 
neural network model in which the flow vs. density 
and average speed vs. vehicle density relationships 
are set up in a new way.   

If we know the relationship between the 
vehicle flow and the vehicle density, that can 
assist us in the analysis of vehicular stability. 
Figure 3 shows a relationship between vehicle 
flow and vehicle density. If the flow vs. density 
differential is positive, then the system is stable, 
which means that the system has the capacity to 
allow a rise in the vehicular flow. The system is 
critical stable if it is between the maximum and 
the 90 percent of the maximum of the 
flow-density curve. If the other parameters are 
fixed, then it can improve the density to input 
the backpropagation neural network, as shown 
in Figure 2. In this way, the flow-density curve 
can be obtained as shown in Figure 3, and it can 
be decided whether the system is stable, 
unstable or critical stable. When it is stable, the 
stability neural network output is 1. When it is 
unstable, the output is 0. When it is critical 
stable, the output is 0.5. Then we can get the 
stability neural network training and test data 
and input them as a density, flow and heavy load 
percentage. The output is 1 or 0 or 0.5. Figure 4 
shows the backpropagation stability neural 
network model. 

3 Estimate the Time of Arrival 

Algorithm 
The users transmit some navigation data to the 

control center of dispatch. The data are including the 
vehicle of current position, velocity, and heading. The 
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central dispatch has received these data, then 
processes them and estimates the time of arrival, 
determines the vehicle flow, density and velocity, 
then judges the system stability of the traffic flow. 
The time of arrival algorithm is to develop as follows. 

Case 1. To discuss the traffic flow on the 
entrance of freeway as shown in Figure 5, if car A 
drives on the freeway with GPS receiver and RF 
beacon, car B just only installs RF beacon that drives 
to enter into the freeway at that time. Car A can be 
communicating with the center of dispatch each other 
including the navigation messages, but car B or 
another cars just can receive the warning signal which 
can predict the time of arrival to collide through the 
wireless radio frequency. Given car A and car B 
positions, velocity, heading, and the range of 
collision. 
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To solve t∆ , then it can predict in how much 
speed to drive under this condition, passing t∆ , it 
will collide. The center of dispatch should issue a 
warning message for car B or another cars. 

Case 2. To discuss for any cross local way, car 
A and car B will crossover each other. They are 
installed the GPS receivers and RF beacon, can 
communicate with the center of dispatch. The car A 
and car B will transmit themselves navigation 
messages to the C.O.D., and receive the time of 
arrival and navigation data from the C.O.D. Given car 
A and car B positions, velocity, heading, and the 
range of collision, 
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To solve t∆ , then it can predict the time of 

arrival t∆ , and the position of collision Cx  under this 

speed.  

We can sample the data and list all the possible 

cases. Define the velocity of car B, 
dt

dxB equals to the 

symbol “ iV ”. The constrain of velocity is 

hrkmVhrkm i /90/30 ≤≤ , find the time of 

arrival t∆ , if maxtt >∆ , then the C.O.D. should 

alarm a warning signal to the car B. Where the 

maxt consists of a transmission time between the car B 

and C.O.D. The propagation delay time on the circuit 
and the computer calculation time can express as 

.sec0.13.01.023.0max =++×=t  

Refer to Figure 5, the time of arrival system is 
described. 

4 Rebuilding the System Artificial 

Neural Network 
This paper proposes two artificial neural 

network approaches to estimate traffic flow, density 
and stability on a freeway. Before explaining these 
two algorithms, we set up an environment database 
for a freeway as shown in Table 1 for the normal 
range of parameters. The system stability can be 
estimated with these two algorithms that is shown in 
Figure 6. 

5 Backpropagation Neural Network 

Algorithm 
 The basic principle of backpropagation neural 

network is to use the gradient steepest descent method 
to reduce the error function to the minimum. It is the 
most popular model of expression of the artificial 
neural network. From the backpropagation neural 
network configuration, the input layer is used to 
accept the input signals, which are already expressed 
by multi-input vectors. 
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The middle layer is used to express the 
intersection impact of the input process unit, and the 
output layer is the output vector of the artificial neural 
network to be used to express the result of the 
operation. If the input layer accepts the input signal, 
then it adds weighting operation and transfer to the 
neural of the hiding layer. The neuron of the hiding 
layer sums all input weighting vectors and 
feedforward propagation to the output layer. 

In this process, the error will be calculated, 
whether it is small or not, otherwise it will be back to 
adjust the weighting factor. It will go on calculating 
the error until the tolerance is small and convergent. 
The first layer output is (density, veh.%, flow) = 

( 1X , 2X , 3X ). The second layer expresses 

)(
3

1
2222 ∑

=

−⋅=
i

jiijj XWfH θ  

Where NetNet

NetNet

ee
eeNetf −

−

+
−

=)(2 . ijW2  is the 

weighting between the first layer i  output and the 

second layer j  neuron. j2θ  is a bias of the 

second layer j  neuron. The third output is 

)(
8

1
32333 ∑

=

−⋅=
i

jiijj HWfH θ , where 

Nete
Netf −+

=
1

1)(3 . ijW3  is the weighting 

between the second layer i  output and the third 

layer j  neuron. j3θ  is a bias of the third layer j  

neuron.  
The final output is 

)(
6

1
4344 ∑

=

−⋅=
i

jiij HWfY θ , where 

Nete
Netf −+

=
1

1)(4 . ijW4  is a weighting between 

the third layer i  output and the output layer j  

neuron. j4θ  is a bias of the output layer j  neuron. 

The relationship from the input X  to the output 
Y is   
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 This is a highly nonlinear relationship. Because the 
stability and the density-flow cannot use a linear 
formula or statistic mathematics to express both 
relations, we have selected the nonlinear 
characteristic of artificial neural network to set up 
this relationship. The weighting and the bias of (1) 
are used to the concept of the gradient steepest 
descent method to minimize an error function and to 
be obtained. If the function E  is an error function, 
which is defined as  

∑
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∧

 is the true output of network, then 
the weighting correction is 
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The bias correction is  
n
jj δηθ∆ ⋅−=  

The simulation and experiments are performed 
and it can be find a good result as shown in Figure 
11. 

6 Probabilistic Decision Base Neural 

Network Algorithm 
S. Y. Kung et al. have developed this algorithm 

at Princeton University. Because of the use of the 
backpropagation neural network, there exists an 
unobvious classified intermediate area. If we use the 
probability neural network and classify the system 
into stable, critical stable and unstable, which is 
decided by the probability, then the unobvious area 
will be canceled. Below we intend to discuss how the 
probability neural network can be applied to the 
estimation of stability. The input layer is to express an 
input variable of the network, and its process number 
depends on problems. Here, we use three input 

variable (density, veh.%, flow) = ( 1X , 2X , 3X ), 
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whose transfer function is a linear transfer function 

xxf =)( . The hiding layer is to express a training 

example, and each process unit expresses a training 
example. The hiding layer connects with the input 
layer is the characteristic vector of this training 

example. It is called the weighting matrix xhW _  

between the input layer and the hiding layer. It can 
express 

h
iih XxhW =_  

where h
iX  is the i  input variable of the h  

training example. The output layer is used to express 
a classification. It connects with a process unit of the 
hiding layer that is the classified message of the 
training example. It is called weighting matrix 

hyW _  between the hiding layer and the output 

layer.  
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where h
jT  is the j output variable of 

the h training example. If this variable is 1, it 
expresses that the example belongs to j type. If it is 
0, it expresses that the example doesn’t belong 
to j type. The output of input layer is (density, veh.%, 

flow) = ( 1X , 2X , 3X ). The output of hiding layer 

is 
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where σ  is a smoothing parameter of network. 

ijxhW _  is the weighting between the input 

layer i input and the hiding layer j training example. 
The output of output layer is 
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where n  is a number of the training example. 

jkhyW _  is the weighting between the hiding layer 

j  training example and the output layer k  output. 

The relationship between the input X  and the 
output Y  is  
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The last classified result is the m  type, where 

the domain of m  is { | max( ) 1,m km Y Y k= = 2, 3} 

and therefore the outcome probability of the m  
type is larger. 

7 Experimental Results 

For a period of time, we have observed the 
northbound and southbound traffic of Freeway No.2 
and collected the traffic flow, vehicle velocity and 
density per five minutes data. All the data that we 
obtained are in the stable area, so it can be assumed 
that most vehicles moved in a stable condition, in 
other words, in that period the vehicles could be 
driven at a slower or higher speed, as shown in Figure 
8. It cannot be seen the critical stable range in this 
Figure. If the traffic density is high, up to a busy 
condition, the vehicle velocity will slowly decrease, 
and then the traffic flow will automatically diminish.  

Using the data that we collected from detectors, 
we proceeded to employ the backpropagation neural 
network method to train and obtain a flow-density 
function chart, shown in Figure 9. From this chart, we 
can see that the maximum of flow is about 4392 
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veh./hr, which determines the traffic stability of the 
freeway, as shown in Figure 10. Figure 11 shows the 
results when the backpropagation neural network 
simulation was used. 

From Figure 11, we can see that a transition area 
of unobvious classified. So we have selected the 
probabilistic decision base neural network to perform 
classified. Through the simulation of probability 
neural network approach, the total number of the 
sample data is 1000, and that of the training samples 
is ten, as shown in Figure 12. If the total number of 
the sample data is 1000 and that of the training 
samples is 30, then Figure 13 shows this condition. 
We intend to collect more data including crowded 
traffic conditions, when vehicle density is high, and 
when it approaches to be completely clogged. We will 
use these data to analyze and justify whether the 
system is stable or not, and provide the data for 
reference. 

Conclusions 

This paper discussed the use of GPS 
receiver and other sensors to detect the vehicle 
position, speed, density and flow on the freeway, 
and then how a center of dispatch collects these 
data and processes them with the meteorological 
data and matters pertaining to civil engineering 
works on the road. Two artificial neural network 
algorithms are used to predict the vehicle 
velocity, density and traffic flow and to judge 
the stability of system. The preliminary 
experiments using the back-propagation 
feed-forward neural network to estimate a traffic 
flow, time of arrival and stability proved highly 
efficient. If one uses the probabilistic decision 
base neural network method to justify and 
classify the stability of the system, the results 
can be obtained more obvious then with the 
backpropagation approach. 
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Table 1 Normal Range of the Parameters 

Parameter Minimum Maximum

Vehicle Flow (veh./h) 0 5000 
Vehicle Density (veh./km) 0 150 
Vehicle Velocity (km/h) 0 150 
Heavy Load Vehicle % 0 100 
Visibility (m) 0 300 
Meteorological 0(Clear) 1(Rain)
Brightness 0(Night) 1(Day)
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Fig 6 System Flow Chart 

 

Fig. 7 Estimate the Stability Using Probability Neural 
Network 
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Fig. 8 Vehicle Flow-Density Analysis 
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Fig. 9 Flow and Density Relationship 
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Fig. 10 Stability and Density Relationship 
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Fig. 11 Backpropagation Neural Network to 

Classified the System Stability 
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Fig. 12 Ten Training Data of PBDNN to the 
Classification of System Stability 
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Fig. 13 Thirty Training Data of PBDNN to the 
Classification of System Stability 
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