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A detailed entropy analysis by the recent novelty of ‘lumping’ is performed in some DNA se-
quences. On the basis of this, we first report here a negative answer to the question ‘can the DNA
sequences at the level of nucleotides be generated by a deterministic finite automaton of essentially
a small number of states, in the statistical limit?’. What is observed in all cases is an almost linear
scaling of the block entropies - up to the numerical precision - close to the one of a mixing ergodic
system with a very high topological entropy. The basic result that we report here is that the all
the examined biological sequences appear to be very little compressible (they lie near to the incom-
pressible limit). The topological entropy of coding regions appears to be even higher than that of
non-coding regions.

I. INTRODUCTION

Nature provides us with a wide variety of symbolic
strings ranging from the sequences generated by the sym-
bolic dynamics of nonlinear systems to the RNA and
DNA sequences or the DLA patterns [1, 14, 15].

Recently, there has been a growing interest in unravel-
ing the mysteries of DNA strings and a significant num-
ber of works has been reported [ 19– 41 ]. DNA strings
are written in an alphabet of four letters {a, c, t, g} where
a stands for adenine, c for cytosine, g for guanine, and
t for thymine. a and g are purines, and c and t purim-
idines.

As has already been observed in [50, 51],
‘...The expected main product of the Human Genome
Project is a large collection of 10.000 to 1.000.000 bases
long sequences of human DNA fragments, characterized
originally only to one or another hybridization marker.
The expected first user of this product is the sequence
analyst for whom the characterization of the sequences,
i.e. identification and mapping of biologically meaning-
full and/or structurally distinct sequence regions, will be
the main task.

A significant part of the sequence characterization
problem is the abundance of heretofore functionally
‘silent’ and structurally ill-defined intervening sequences
and spacers. Together with dispersed and tandem re-
peats which are structurally recognizable but function-
ally silent as well, this makes over 90 % of the human
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genome currently meaningless. These sequences, as non-
sensical as they appear, also have to be located and de-
scribed in order to clearly distinguish them from those
scarce sequences that are believed to be ubderstood.

One could think of several levels of the sequence char-
acterization, from preliminary screening for few major
features all the way down to search for numerous par-
ticular functional sites. To begin with, it would de de-
sirable to simply tell whether this or another sequence
fragment is promising at all. For example, even an ap-
parently featureless sequence would seem to be a priori
more interesting or at least more complex than, say, a
tandemly repeating sequence motif. Thus it would be
desirable to be able to somehow evaluate the complexity
of the sequences...’

One of the earlier, if not the earliest, and most inspiring
work on the possible relation of nucleotide sequences and
aspects of their undrelying dynamics, termed at that time
as ”dynamic linguistics”, was investigated by J.S. Nico-
lis and co-workers in the end of 80’s and summarized in
his book [41]. In this work the transinfornation (or mu-
tual information) was chosen as the indicator of ” ...the
‘bulk’ information about the ‘grammar’ and ‘syntax’ of
the ‘language’...” (c.f [41]) for symbolic strings of biolog-
ical origin, namely the sequences of RNA-polymerase-III
and human embryonic cDNA.

Except from the transinformation, entropy-like quan-
tities are a very useful tool for the analysis of such se-
quences. Of special interest are the block entropies, ex-
tending Shannon’s classical definition of the entropy of a
single state to the entropy of a successsion of states [14].
In particular, it has been shown in the literature that the
scaling of the block entropies with length gives sometimes
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interesting information on the structure of the sequence
[12, 13].

In particular, we have derived an entropy criterion for
the specific, yet quite important algorithmic property of
automaticity of a sequence. We recall that, a sequence
is called automatic if it is generated by a finite automa-
ton (The lowest level Turing machine.) For more details
about automatic sequences the reader is referred to [4],
and for their role in Physics to [5].

Our criterion is based on the entropy analysis by lump-
ing. Lumping is the reading of the symbolic sequence by
‘taking portions’ (see eq.(1)), as opposed to gliding where
one has essentially a ‘moving frame’. Notice that gliding
is the standard convention in the literature. Reading the
symbolic sequence in a specific way is also called decima-
tion of the sequence.

An important aspect of recent research activities about
DNA strings concerns the idendification of the coding and
non-coding regions in the chromosome. The coding re-
gions encode for the production of a given protein, while
the non-coding regions do not. In the light of this re-
search many interesting algorithms and methods - often
heuristic - have been developed. Noawadays, in the ba-
sis of these algorithms and of experimental data there is
a general agreement for a given chromosome region to
be considered as coding region or not. Still, as already
pointed out, most of these results are heuristic and have
been invented for this particular situation (they are not
of general purpose in mathematical physics).

In this framework our group have proposed a system-
atic series of numerical experimentation aiming at re-
vealing some algorithmic aspects of genomic sequences.
Some of these results are presented here. Note that en-
tropy analysis of some chromosomes by different tech-
niques have been reported in [34, 36].

A second interesting point in this context is that, ac-
cording to different independent methods, coding regions
appear to have higher topological entropy than non-
coding regions. There are some exceptions to that rule,
reported at [34].

In the present paper we shall re-examine from an en-
tropic point of view by lumping some chromosomes which
are already known to be (mostly) coding or non-coding.

This treatement has the additional merit to pose the
problem of possible automaticity and other algorithmic
properties in a firm and well-understood mathematical
basis, although there always is the serious drawback of
patchiness [33] means, of important fluctuations around
the mean statistical values. To apply the standard arse-
nal of Non-equilibrium Statistical Mechanics one have
to suppose stationarity, and this is what it has been
done explicitly or implicitly in the statistical treatments
of the problem [34–37]. There are however some works
in the literature where non-stationarity is postulated and
checked in an a posteriori basis. Nevertheless, the present
length of the analysed chromosomes guarantees - at least
numerical - stability.

The basic conclusions in the literature are retrieved

from our entropy analysis by lumping. None of the exam-
ined sequences appears to be automatic. Block entropies
follow a monotonic decay. The scaling of the block en-
tropies appears to be (almost) linear, close to the one of
a (strongly) mixing system in the regime of developed
chaos.

Moreover, the Kolmogorov-Sinai (K-S) entropy seems
to be larger for viruses that for human beings. Thic could
be a first signal that differences at the level of functional-
ity and structure (or even of anatomy) are reflected at the
chromosome level of organisation of life. Also, the K-S
entropy seems to be larger for coding chromosomes than
for non-coding ones, thus supporting a similar, previous
conclusion existing at the literature [34, 35].

Concerning the compressibility issue now, one could
ask oneself if the amount of information stored in the
present important biological data bases, is possible to
be replaced by some other means, occupying less place
in computer memory, as for instance, deterministic or
stochastic automata or some clearcut ‘syntactic rules’.
In the last case, the big data bases could be replaced
by smallest ones. This is a question of obvious practical
importance not only for the biologist but also for the
bioinformatician. As we shall see, we will give a negative
answer to this question.

The paper is articulated as follows. In Sec 2 we present
the mathematical formulation of the entropy analysis by
lumping. In Sec 3 we present the example of an au-
tomatic sequence, taken from the world on Nonlinear
Science, namely the Feigenbaum sequence. In Sec 4 we
present the computational platform, and in Sec 5 our
main results concerning DNA sequences. Finally, in Sec
6 we draw the main conclusions and discuss future work.

II. ENTROPY ANALYSIS BY LUMPING

For reasons of completeness and for later use, we com-
pile here the basic points of the method of the entropy
analysis by lumping.

Consider a subsequence of length N selected out of a
very long (theoretically infinite) symbolic sequence. We
stipulate that this subsequence is to be read in terms of
distinct ‘blocks’ of length n,

... A1...An︸ ︷︷ ︸
B1

An+1...A2n︸ ︷︷ ︸
B2

... Ajn+1...A(j+1)n︸ ︷︷ ︸
Bj+1

... (1)

We call this reading procedure lumping. We shall follow
lumping in the sequel.

The following quantities characterize the information
content of the sequence [11, 12]

i) The dynamical (Shannon-like) block-entropy for
blocks of length n

H(n) = −
∑

(A1,...,An)

p(n)(A1, ..., An) · ln p(n)(A1, ..., An)

(2)
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where the probability of occurrence of a block A1...An,
denoted p(n)(A1, ..., An), is defined (when it exists) in the
statistical limit as

No. of blocks, A1...An, encountered when lumping

total No. of blocks
(3)

starting from the beginning of the sequence, and the
associate entropy per letter

h(n) =
H(n)

n
. (4)

ii) The conditional entropy or entropy excess associ-
ated with the addition of a symbol to the right of an
n-block

h(n) = H(n + 1)−H(n). (5)

iii) The entropy of the source (a topological invariant),
defined as the limit (if it exists)

h = lim
n→∞

h(n) = lim
n→∞

h(n) (6)

which is the discrete analog of metric or Kolmogorov en-
tropy.

We now turn to the selection problem, that is to the
possibility of emergence of some preferred configurations
(blocks) out of the complete set of different possibilities.
The number of all possible symbolic sequences of length
n (complexions in the sense of Boltzmann) in a K-letter
alphabet is

NK = Kn. (7)

Yet not all of these configurations are necessarily realized
by the dynamics, nor are they equiprobable. A remark-
able theorem due to McMillan [11], gives a partial answer
to the selection problem asserting that for stationary and
ergodic sources the probability of occurrence of a block
(A1, ..., An) is

pn(A1, ..., An) ∼ e−H(n) (8)

for almost all blocks (A1, ..., An). In order to determine
the abundence of long blocks one is thus led to examine
the scaling properties of H(n) as a function of n.

Another advandage of considering the quantity of block
entropy – apart from its faster search requirements and
easier implementation – is that it is equiped by its very
construction with a quite powerful diagnostic for the on-
set of finite size effects. It is well known that block en-
tropy is underestimated where even in some cases (gaus-
sian assumptions of errors in estimation) specific formu-
las have been derived for correction, [39].

This underestimation of H(m) for large values of m
is due to the simple fact that not all words will be rep-
resented adequately if one loocks long enough samples.
The situation becomes more and more prominent for cal-
culating H(m) by ‘lumping’ instead of ‘gliding’. Indeed
in the case of ‘lumping’ an exponentially fast decaying
tail towards value zero follows after the plateau.

Since the probabilities of the words of length m are
calculated by their frequencies, i.e. pn = |Bn| /N[sample]

where N[sample] is the size of the avalable data-sample i.e.
the length of the ‘text’ under considereation in ‘letters’
then as Bn → 0 for long words (since m → N[sample]) the
block entropy calculated will reach a maximum value, its
plateau, at

HMAX = log[b](N[sample])

where b the lenght of the alphabet. In our case, of course,
b = 4, see for example Fig. 4. This way, the value of
HMAX can determine a safe border for finite size effects.

After this small digression, we recall here the main re-
sult of the entropy analysis by lumping, see also [17, 18].
Let mk be the length of a block encountered when lump-
ing, H(mk) the associated block entropy. The following
property then holds.

• If the symbolic sequence (un)n∈N is m-automatic,
then

∃ ko ∈ {0, 1}, m ∈ N ∗, ∀ k ≥ ko : H(mko) = H(mk)
(9)

when lumping, starting from the beginning of the
sequence.

The meaning of the previous proposition is that for
m-automatic sequences there is always an envelope in
the diagram H(n)/n versus n, falling off exponentially
as ∼ m−k for blocks of a length mk, k = 1, 2, .... For
infinite ergodic strings, the conclusion does not depend
on the starting point. Similar conclusions hold if instead
of a one-to-one letter projection we have a one-to-many
letters projection of constant length. In particular, we
have the following result.

• If the symbolic sequence (un)n∈N is the im-
age of the fixed point of a set of substitutions of
length m by a projection of constant length µ, then

∃ ko ∈ {0, 1}, m ∈ N ∗, ∀ k ≥ ko : H(µ·mko) = H(µ·mk)
(10)

when lumping, starting from the beginning of the
sequence.

Our propositions give an interesting diagnostic for au-
tomaticity. When one disposes of an unknown symbolic
sequence and applies numerically the entropy analysis
by lumping, then if the sequence does not obey such an
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invariance property predicted by the propositions, it is
certainly non-automatic. In the opposite, if one observes
the adequate invariance property, then the sequence is a
candidate to be automatic.

III. THE EXAMPLE OF THE FEIGENBAUM
SEQUENCE

Before proceeding to the analysis of DNA strings
(which as we shall see presently turn out not to be auto-
matic) we first give an example of the entropy analysis by
lumping of a 2-automatic sequence: the period-doubling
or Feigenbaum sequence, much studied in the literature
[8, 13, 16].

The Feigenbaum symbolic sequence can in an equiva-
lent manner be generated by the Metropolis, Stein and
Stein algorithm [6, 16], or as the fixed point (σF )∞(R)
of the set of substitutions of length 2: σF (R) =
RL, σF (L) = RR starting with R, or by the finite au-
tomaton of Fig. 1.

According to our first proposition, for this sequence it
holds

H(1) = H(2) = ... = H(2k) (11)

when lumping, and for any integer r,

H(2 · r) = H(r) (12)

as we have shown in [16]. The diagram H(n)/n versus n
for this sequence is shown in Fig. 2.

Thus, the Feigenbaum sequence appears to be ex-
tremely compressible from the viewpoint of algorithmic
information theory, as one memorizing the finite automa-
ton of Fig. 1 (instead of memorizing the full sequence),
can reproduce every term ans so, the complete sequence.
We say that the information carried by the Feigenbaum
sequence is ‘algorithmically compressible’.

The period-doubling sequence, is the only for which
an exact functional relation between the block-entropies
when lumping and when gliding exists in the literature,
so that it is an instructive example.

IV. THE COMPUTATIONAL PLATFORM

In the following Section we shall present the results
of some medium-scale computations on DNA sequences.
The computations have been performed with a new, user
friendly Maple package called Tools for Symbolic
Dynamics.

This package is intended to provide a set of tools to
facilitate the analysis of the information content of sym-
bolic sequences in order to

• test theoretical predictions up to a very high degree
of accuracy,

• perform efficiently different kinds of analyses to un-
kown sequences with the aim to discover potential
patterns

• produce graphics to help interpret the results.

The initial version of Tools for Symbolic Dynam-
ics has been written in Maple 5. Ports for both Maple
6 and Maple 7 are currently avilable. The package may
be used with both the text and the graphical inerfaces of
Maple.

The package Tools for Symbolic Dynamics has
been tested in the analysis of various substitutive se-
quences (sequences generated by a set of substitution
rules for each letter, over a finite alphabet) and the cor-
recteness of the relevant routines has been verified on
large-scale computations [19]. Using Tools for Sym-
bolic Dynamics we can perform entropy computations
by gliding or lumping on known or unknown symbolic
sequences over a finite alphabet with millions of terms,
thanks to a suitable search algorithm developed by one of
us (IK), thus bypassing partially the well-known problem
of combinatorial explosion [13].

In the next Sec we shall present the results obtained
with the help of Tools for Symbolic Dynamics on
real DNA sequences.

V. RESULTS

Essentially we have examined the DNA sequences
shown in the following Table.

Real name % of coding Length
lambda virus 99 48502

human beta-globin region 3 73326
human vitamine D gene 3 55136

adenovirus AD2 78 35937
human interferone 6 5961

human heparan HSPG2 gene 92 7272

where for lambda virus and for the adenovirus AD2 we
have considered the complete genome.

For the first sequence (labda virus) the first few block
entropies (where we have good enough statistics) are
listed below

Block length n H(n)
1 1.39
2 2.76
3 4.12
4 5.47
5 6.77

For the other sequences from the table, we have
found similar results.

Based on the numerical regression, we have found that
the block entropies by lumping fit very well with a linear
regression of the form

H(n) = Ho + nh (13)
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where, according to the theory developed in [14], Ho ex-
presses the statistical error around the regression and
should be almost equal to zero, and h is the K-S entropy
of the process. Moreover, Ho can be related to the ef-
fects of ‘bad statistics’. In fact, it turn out to be larger
for (very) small sequences.

After n > 4, we do not have enough statistical precision
for the entropies and we do not include the points for
n > 4 in the regression. The effects of bad statistics are
further explained in Fig.3.

The parameters of the regression Ho and h are
presented in the table below.

Real name h % hmax Ho

lambda virus 1.361 0.982 0.032
human beta-globin region 1.325 0.956 0.042
human vitamine D gene 1.314 0.948 0.040

adenovirus AD2 1.360 0.981 0.026
human interferone 1.292 0.932 0.072

human heparan HSPG2 gene 1.329 0.958 0.071

In fact the ratio h/hmax = h/ ln 4, could be used
in our case as an ‘automaticity measure’, expressing
somehow the distance from being automatic.

For the m-automaticity one could indeed consider the
ratio

d = max(k) ‖H(mk)−H(mk−1)
Hmax(mk)

‖ (14)

of the heights of the ‘deviations from automatic behavior’
(in view of our first proposition) as an % measure of non
m-automaticity.

In fact, for linear scaling of the block entropies this
leads just to

d =
h

hmax
=

h

ln 4
(15)

in our case. This indicator of complexity, coincides for-
mally in our case with the ‘compression coefficient’ de-
fined in Information Theory [11]. The meaninng of the
compression coefficient is that ’it measures in a natural
way the compression of the given uncoded text by the
given means of coding...’.

In the light of this discussion, the basic conclusion aris-
ing from the above Table is that the information carried
by this biological strings is very little compressible. This
is also in agreement with the work of the Boston [34, 35]
and the Berlin groups [36], where for the human chromo-
some 22 the compressibility in the region n < 5 is around
97.5 %.

To summarize, from this Table, we crystalize the fol-
lowing conclusions.

• None of the six above examined sequences presents
a small automaticity.

• The entropy per letter h(n) follow a monotonic
decay, clearly indicating the mixing character of

the underlying dynamics. No traces of non-
monotonicity of the h(n) can be found, even for
very large n.

• All DNA sequences examined, present a large K-S
entropy hKS , indicating that life is working in very
large ‘distance from automaticity’.

• Viruses present in general largest hKS entropy, pos-
sibly indicating that differences in the funtionality
and the structure of living organisms are reflected
in the entropies of their DNA and conversely.

• Coding regions present in general largest hKS en-
tropies than the non-coding ones.

We have also done a calculation of the block entropies
inside a coding region of the lambda fage from 191 to 735.

Block length n H(n)
1 1.4
2 2.7
3 3.7
4 4.5
5 4.6

This results are similar to that of the Berlin group
[36], where they observe first an ‘almost random’ region
which after n > 5 becomes clearly differentiated from
randomness and presents a sublinear scaling. (In our
case, we do not have enough precision (due to the small
length of the sequence) to observe this region.)

In no case we observe an exponential envelope pre-
dicted by the propositions about automaticity. (In any
case the positivity of the K-S entropy alone, suffices to
guarantee the non existence of a deterministic finite au-
tomaton wich generates the sequence, as determinism im-
plies that the K-S entropy is zero.)

VI. CONCLUSIONS AND OUTLOOK

In this work we have performed an analysis of some
DNA sequences by lumping. The basic novelty of this
method is that, unlike the Fourier transform or the con-
ventional entropy analysis by gliding, it gives results that
can be related with algorithmic characteristics of the se-
quences and, in particular, with the property of auto-
maticity.

The basic conclusions of this analysis is that the DNA
sequences are not automatic and the block entropies
present an almost linear scaling with the word length,
characteristic of a mixing ergodic system. Moreover, non-
coding regions have in general smaller hKS entropies than
coding ones, a fact that could indicate some ‘local or-
der’ in these parts of the sequences. Once again we have
avoided to concatenate text.

This conclusion comes in support of a conjecture given
in [34, 35]. However, the techniques followed in the two

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp481-491)



6

works are quite different. In [34] the authors have per-
formed entropy analysis by gliding on sequences com-
ing from concatenated coding or non-coding parts of real
DNA sequences. In this work we have performed en-
tropy analysis by lumping on some suitable pre-selected
sequences which are known to be mostly coding or non-
coding. Clearly, more numerical work is needed in order
to support further or reject these conjectures.

Recently also, E. N. Trifonov [50, 51] has proposed his
own theory of linguistic complexity and applied it to bi-
ologically relevant problems [52]. The link between this
theory and the present calculations should be exploited.
Yet another perspective is opened by a recent ‘parity code
interpretation of nucleotide alphabet composition’ intro-
duced in [54], where the nucleotide alphabet is considered
as an error-correcting code.

About the compressibility issue now, it seems that
life works in very big distance from being automatic.
In particular, the biological sequences examined in this
work appear to be very little compressible (they lie near
to the incompressible limit). Thus it seems that, the
present big biological data bases cannot be replaced in
the near future by smallest data bases, except if new,
strong, compressibility algorithms show up.
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[40] T. Pöschel, W. Ebeling and H. Rosé, Guessing Probabil-
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FIG. 1: Deterministic finite automaton predicted by Cobham’s algorithmic procedure. This automaton contains two states: i
and a and to each state corresponds by the function of exit F a symbol; either F (i) = R = 1 or F (a) = L = 0. To calculate
the nth term of the 2∞ sequence we first express the number n in its binary form and then we start running the automaton
from its initial state, according to the binary digits of n. In this trip we read the symbols contained in the binary expansion
of n from the left to the right following the targets indicated by the letters. For instance n = 3 = (11 base 2) gives the run
i → i → i so that u(3) = R = 1, while n = 9 = (1001 base 2) gives the run i → i → a → i → i so that u(9) = R = 1.
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FIG. 2: Entropy analysis by lumping of the Feigenbaum symbolic sequence. Plot of H(n)/n versus n.
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FIG. 3: Entropy analysis by lumping of the first 9840 terms of the DNA sequence of lamba virus.

FIG. 4: Effect of bad statistics in the diagram H(n)/n versus n of the human beta-globin region (a) and of the human interferone
(b)After n > 4 the statistics becomes poor. Apparently, this result is more pronnounced for a short sequence (b).
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FIG. 5: Entropy analysis by lumping of the human beta-globin region. A linear scaling of the block entropies is observed where
we have good statistics.
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