Using Grammatical Evolution for Evolving Intrusion Detection Rules

DOMINIC WILSON, DEVINDER KAUR
Electrical Engineering and Computer Science
University of Toledo
Toledo, Ohio
USA

Abstract: - The use of Grammatical Evolution for automating the intrusion detection rules is investigated in this paper. We apply this method to the KDD99 intrusion dataset and demonstrate its usefulness in this context. We achieve favorable results by evolving rules for classifying both normal and abnormal traffic.

Key-Words: - Grammatical Evolution, Intrusion Detection, Rule-based inference.

1 Introduction
An intrusion is defined as any set of actions that attempt to compromise the integrity, confidentiality or availability of a resource. Intrusion detection is the process of monitoring and analyzing events for signs of intrusion [1]. Intrusion Detection Systems (IDS) have become a standard component of network security infrastructures as they allow network administrators to detect policy violations. These violations can range from unauthorized users trying to gain access to misuse of resources in order to deny legitimate access. Detecting such violations is a necessary step in taking remedial action.

In order for IDS to detect intrusions it needs some method of differentiating normal network use from abnormal use, in this paper Grammatical Evolution is used to derive classification rules using the set of 41 attributes of the KDD99 dataset.

Grammatical Evolution (GE) is a method of evolving syntactically correct programs in an arbitrary context free language. GE has been tested with successful results on a symbolic regression problem, a trigonometric identity problem and a symbolic integration problem.

GE makes use of Genetic Algorithms as its method of finding solutions. In Genetic Algorithms use is made of selection, mutation and recombination operators to evolve the fittest genome for creating the program. Genetic Algorithms are introduced in the next section, prior to a discussion of the Grammatical Evolution, and the GE techniques used in this investigation. Section 4 explains the intrusion dataset used. Our approach and results are stated in section 5. We end with our conclusion and future direction.

2 Genetic Algorithms
Genetic Algorithms are forms of search procedures that use analogies of the genetic operations found in biology [2]. Darwin’s theory of natural selection explains the survival of the fittest organisms in a population. The result is that genes encoding traits that favor fitness will be passed down through the generations, until they become common. Furthermore, when two organisms mate and produce offspring, characteristics of each parent are combined in new ways; so it is possible that the offspring will inherit features from both parents and be better suited to the environment. Also rare genetic mutation will result in some individuals possessing traits that were not present in the population before.

In genetics, the basic structures are lengths of DNA called chromosomes. These are made up of a number of genes, each of which encodes a particular trait such as eye color; the range of ‘values’ that the gene can take are called the alleles. The particular combination of alleles on a chromosome can be thought of as a blueprint for an individual and is referred to as a genotype. The resulting physical characteristics of an organism upon expression of the genotype are known as the phenotype. The structures manipulated by a Genetic Algorithm are simplified model of these chromosomes that are usually made up of binary strings. The aim of Genetic Algorithm is to develop an optimal genotype by applying the simple genetic operators of selection, crossover and mutation. Genetic Algorithm fitness is usually measured as a function of how each phenotype measures up to a particular standard.

Selection is the process of determining which individuals will become parents for the next generation. The probability of an individual going on to breed is made some way proportional to its
current fitness. This results in a ‘mating pool’ biased towards individuals of higher fitness. In order to simulate the genetic recombination that occurs naturally during sexual reproduction, some individuals will be used for ‘breeding’ via the crossover operator. A predefined crossover probability determines how often this operator is applied. In the single-point crossover used in this investigation, each parent string is divided into a ‘head’ and ‘tail’ section, and the tails are swapped over. For the mutation operation, each position in the binary string has a very small probability (typically 0.001) of having its value randomly altered.

3 Grammatical Evolution
Grammatical Evolution (GE) [3,4,5] is a method of evolving syntactically correct programs in an arbitrary context free language. The language to be generated is specified using a Backus Naur Form (BNF) grammar, consisting of a series of production rules mapping a set of non-terminal symbols to the set of terminals that are defined in the language.

Backus Naur Form (BNF) is a convention for expressing the grammar of a language in the form of production rules. The BNF grammar can be represented by a tuple, \(\{N, T, P, S\} \), where \(N \) is the set of non-terminals, \(T \) is the set of terminals, \(P \) is the set of production rules that map the elements of \(N \) to \(T \) and \(S \) is the start symbol which is an element of \(N \).

An example BNF grammar is displayed in. In the example BNF grammar, the symbol “::=” denotes that the non-terminal on the left of the production rule can be mapped into the symbol that appears on the right. The pipe symbol | is used to denote ‘or’. Definitions can be recursive as the first production rule in shows.

3.1 How Grammatical Evolution works
A linear genome made up of a variable number of ‘genes’ – each of which is represented by an 8-bit binary number – is used to control how the BNF grammar definition is mapped to an actual program. A Genetic Algorithm involving the use of selection, mutation and recombination is used to evolve the fittest genome for creating the program. The evolutionary aspect of GE is language independent, and can theoretically be used to generate functions of arbitrary complexity.
Consider for example the following rule:

\[
\text{<value>} ::= a \ (0) \\
| \ b \ (1) \\
| \ c \ (2) \\
| \ d \ (3)
\]

i.e. given the non-terminal “value” there are four production rules to select from. If we assume the integer corresponding to the codon being read is 29, then 29 MOD 4 = 1 resulting in the selection of “b” as the terminal. The system traverses the genome by reading a new codon each time a production rule has to be used.

104, 68, 44, 216, 17, 61, 123, 230, 217, 71, 250, 19, 62, 159, 122, 201, 123

Fig. 3: Example codon sequence

Consider a chromosome with the codon sequence expressed in Fig. 3 (expressed in decimal). The mapping process starts from the start symbol \texttt{<statement>}; because there is more than one production for this symbol (i.e. 2), we use the stated formula to get 104 MOD 2 = 0, and choose the production labeled (0). \texttt{<statement>} is replaced with:

\[
\text{IF} \ \texttt{<condition>} \ \texttt{<statement>} \ \text{Else} \ \texttt{<statement>} \ \text{END};
\]

The next step involves the replacement of the leftmost non-terminal “\texttt{<condition>}” by “\texttt{(variable} > \texttt{value})”. Because there was only one production for “\texttt{<condition>}”, a new codon value was not used. The current expression becomes:

\[
\text{IF} \ \texttt{(variable} > \texttt{value}) \\
| \ \texttt{<statement>}
\]

Calculating 68 MOD 2 = 0, specifies the use of the production:

\[
\texttt{<variable>} ::= x.
\]

Full resolution of the codon sequence yields the program:

\[
\text{IF}(x>a)
\]

\[
\text{IF}(y>b) \ (f1), \\
\text{ELSE} \ (f2), \\
\text{END};
\]

\[
\text{ELSE} \ 	ext{IF}(y=c) \ (f3), \\
\text{ELSE} \ (f4), \\
\text{END};
\]

The mapping system can be seen as having transformed a binary string into a program that partitions a feature space into a decision tree. The fitness of the program (and its equivalent decision tree structure) is assessed by substituting feature values and measuring the difference between the calculated output and observed output of the process being identified.

4 The KDD 99 intrusion datasets

In 1999, recorded network traffic from the DARPA 98 Lincoln Lab dataset\[7\] was summarized into the KDD 99 dataset with 41 attributes per record. We ran our experiments using the 10% KDD 99 intrusion dataset. These have been part of the de facto standard for training and testing intrusion detectors since they were published \[8\]. The training dataset contained about 5,000,000 connection records, and the training 10% dataset consisted of 494,021 records among which there were 97,278 normal connections (i.e. 19.69%). The data set has 41 attributes for each connection record plus one class label as shown in Table 1. The 39 different attack types present in the 10% datasets are given in Table 1.

<table>
<thead>
<tr>
<th>Attack Class</th>
<th>Specific attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoS</td>
<td>back, land, neutron, pod, smurf, teardrop, apache2, mailbomb, processstable, snmpgetattack, udpstorm,</td>
</tr>
<tr>
<td>Probe</td>
<td>ipsweep, nmap, portswipe, satan, mscan, saint,</td>
</tr>
<tr>
<td>R2L</td>
<td>ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster, httptunnel, named, snmpguess, worm, xlock, xsnoop, sendmail,</td>
</tr>
<tr>
<td>U2R</td>
<td>buffer_overflow, loadmodule, perl, rootkit, sqlattack, xterm, ps,</td>
</tr>
</tbody>
</table>
Table 1: Classification of attacks

The attack types can be classified into four main categories as shown in Table 1:

Denial of Service (DoS) is a class of attack where an attacker makes a computing or memory resource too busy or too full to handle legitimate requests, thus denying legitimate users access to a machine.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Variable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>continuous</td>
</tr>
<tr>
<td>protocol type</td>
<td>discrete</td>
</tr>
<tr>
<td>service</td>
<td>discrete</td>
</tr>
<tr>
<td>land</td>
<td>discrete</td>
</tr>
<tr>
<td>src bytes</td>
<td>continuous</td>
</tr>
<tr>
<td>dst bytes</td>
<td>continuous</td>
</tr>
<tr>
<td>land</td>
<td>discrete</td>
</tr>
<tr>
<td>wrong fragment</td>
<td>continuous</td>
</tr>
<tr>
<td>urgent</td>
<td>continuous</td>
</tr>
<tr>
<td>hot</td>
<td>continuous</td>
</tr>
<tr>
<td>num failed logins</td>
<td>continuous</td>
</tr>
<tr>
<td>logged in</td>
<td>discrete</td>
</tr>
<tr>
<td>num compromised</td>
<td>continuous</td>
</tr>
<tr>
<td>root shell</td>
<td>continuous</td>
</tr>
<tr>
<td>su attempted</td>
<td>continuous</td>
</tr>
<tr>
<td>num root</td>
<td>continuous</td>
</tr>
<tr>
<td>num file creations</td>
<td>continuous</td>
</tr>
<tr>
<td>num shells</td>
<td>continuous</td>
</tr>
<tr>
<td>num access files</td>
<td>continuous</td>
</tr>
<tr>
<td>num outbound cmdns</td>
<td>continuous</td>
</tr>
<tr>
<td>is host login</td>
<td>discrete</td>
</tr>
<tr>
<td>is guest login</td>
<td>discrete</td>
</tr>
<tr>
<td>count</td>
<td>continuous</td>
</tr>
<tr>
<td>srv count</td>
<td>continuous</td>
</tr>
<tr>
<td>error rate</td>
<td>continuous</td>
</tr>
<tr>
<td>srv error rate</td>
<td>continuous</td>
</tr>
<tr>
<td>diff srv rate</td>
<td>continuous</td>
</tr>
<tr>
<td>srv diff host rate</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host count</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host srv count</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host same srv</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host diff srv</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host same src</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host diff host</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host error rate</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host srv error</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host error rate</td>
<td>continuous</td>
</tr>
<tr>
<td>dst host srv error</td>
<td>continuous</td>
</tr>
</tbody>
</table>

Table 2: Variables for intrusion detection data set

A remote to user (R2L) attack is a class of attack where an attacker sends packets to a machine over a network, then exploits the machine's vulnerability to illegally gain local access as a user.

User to root (U2R) exploits are a class of attacks where an attacker starts out with access to a normal user account on the system and is able to exploit vulnerability to gain root access to the system.

Probing is a class of attack where an attacker scans a network to gather information on known vulnerabilities. An attacker with a map of machines and services that are available on a network can use the information to look for exploits.

5 The use of GE on KDD 99 dataset

The GE based classifier design involves:
1) Designing a grammar (in BNF form) that dictates the syntax of the partitioning and rule structure.
2) Determining a fitness function for using GE to optimize the classifier, and
3) Evolving the candidate structures until some predetermined stopping criteria is reached.

Non_terminals = {<statement>,<termlist> , <c_operator>, <d_operator>, c_value,d_value }

Terminals = {variables = (Duration , Src_byte,…. dst host srv rerror rate), ,<=,>=,<}

S = <statement>

P= <statement> ::= SELECT Count(*) FROM kdd_data
WHERE (<termlist> AND <termlist>) AND (Class = DOS)

<termlist> ::= (<termlist> AND <termlist>)
| <c_variable> <c_operator> <c_value>
| <d_variable> <d_operator> <d_value>
| Duration <c_operator> <c_value>
| Src_byte <c_operator> <c_value>
| protocol type <d_operator> <d_value>
| service <d_operator> <d_value>

| dst host srv error rate <c_operator> <c_value>
<d_operator> ::= '<>'
| '='
<c_operator> ::= '<'
| '>'

Fig. 4: BNF used
The design objective is to efficiently search for compact classifiers that are highly interpretable and have high classification accuracy.

The BNF of the GE grammar was designed to produce relational statements that were used to obtain data from the 10% KDD dataset which was stored in a relational database. The general form of the BNF is shown in Fig 4.

c_operator and d_operator refer to continuous and discrete operators respectively. For continuous variables, the continuous operators ‘>’ and ‘<’ are used, and for discrete variables the operators ‘=’ and ‘<>’ were used. C_value’s are values that equally divide the domain of each attribute into four and d_values correspond to the actual discrete values relevant to each discrete variable.

An example SQL Select statement that can be produced by this BNF is:

```sql
SELECT Count(*) FROM kdd_data
WHERE (((protocol_type <> 'udp')
AND (serror_rate < 0.75))
AND ((Class = Normal));
```

In this example protocol type is a discrete attribute and udp is a specific protocol type; serror_rate is a continuous variable and 0.75 is ¾ of the range of serror_rate which spans 0 to 1.

Assessing the fitness of each SQL Select statement was done by:

$$\text{fitness} = \frac{A \cap B}{A \cup B}$$

Where A is the join of the attributes and B is a specific output class. Using our example SQL statement,

\[A = \{ x | x \in \{\text{prototype}<\text{udp}\} \wedge \{\text{serror}_\text{rate}<0.75\} \} \]

\[B = \{ x | x \in \{\text{class} = \text{normal}\} \}. \]

Selections were made based on the rank of the fitness. The population size was set at 300 individuals; mutation was set at 1% and the single point crossover rate at 80%. The classification accuracy obtained for different attack types are shown in Table 3.

6 Conclusion

The potential for developing intrusion system rules using Grammatical Evolution is demonstrated. The GE method is a form of symbolic regression and can work with both continuous and discrete input attributes without any assumption that the discrete values form a continuum. The accuracy is higher among the Denial of Service and Normal classes which form a large proportion of the training dataset (79.2% and 19.7% respectively). As with many other results reported eg [9] the attacks involving content (ie U2R and R2L), show low detection rates. The current work is limited to finding the single hypercube of attribute properties which best infers a class. We are looking at extending this work into a union of hypercubes such that non-linear separation into classes can be better achieved. Further work will also include the development of hierarchical rule-based intrusion detection systems using GE.

<table>
<thead>
<tr>
<th>Class</th>
<th>Training Data Accuracy (%)</th>
<th>Testing Data Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>87.6</td>
<td>54.6</td>
</tr>
<tr>
<td>Dos</td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>Probe</td>
<td>59.1</td>
<td>49.4</td>
</tr>
<tr>
<td>U2R</td>
<td>45.6</td>
<td>31</td>
</tr>
<tr>
<td>R2L</td>
<td>23.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 3: Classification accuracy obtained

References:

