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Abstract: - RNA secondary structure prediction is a computationally feasible and broadly studied problem. It 
can be considered as the combinatorial optimization problem. In this paper, we propose an improved transiently 
chaotic neural network (TCNN) for RNA secondary structure prediction. In the improved model, a variable p(t) 
called the acceptance probability of chaos is introduced into the original TCNN model. Variable p(t) is used to 
decide if the chaos term will be calculated or not. With variable p(t), the network can be speeded up to converge 
to a fixed point with fewer iterations. The improved TCNN is analyzed theoretically and evaluated 
experimentally through predicting RNA secondary structure. The simulation results show that the improved 
transiently chaotic neural network can reach stable state with fewer steps than the original transiently chaotic 
neural network. 
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1   Introduction 
RNAs are molecules that are important for many 
processes in the cell. A molecule of RNA consists of 
a long chain of subunits, called ribonucleotides. Each 
ribonucleotides contains one of four possible bases: 
adenine, guanine, cytosine, or uracil (abbreviated as 
A, G, C, U respectively). The base pairing of RNA is 
generally called the secondary structure. It is the 
secondary structure that determines how the RNA 
will interact and react with other components. 
   Appealing computational methods for RNA 
secondary structure prediction from knowledge of 
primary structure have been developed to provide 
insight into functions that RNA serves. Early 
algorithm was made by Zuker and Stiegler [1]. The 
Zuker’s algorithm (implemented in the programs 
called MFOLD [2]) is an efficient dynamic 
programming algorithm for identifying the globally 
minimal energy structure for a RNA sequence, as 
defined by such a thermodynamic model [3] [4]. 
Zuker’s energy calculations have been further 
improved [5] [6] [7]. In 1992, Takefuji presented a 
Hopfield neural network for RNA secondary 
prediction [8]. The results showed that this neural 
network algorithm performed better than the 
previous algorithms in the aspect of calculating time 
and accuracy. But the major weakness of this 

algorithm is still due to its failure in finding the 
global minimum solution. 
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n this paper, we propose an improved transiently 
aotic neural network that can reach stable state 
ith fewer steps than the original transiently chaotic 
ural network. In the improved model, a variable 
t) called the acceptance probability of chaos is 
troduced into the original TCNN model. Variable 
t) is used to decide if the chaos term will be 
lculated or not. If the chaos term is accepted, the 
twork will have the same chaotic dynamics as the 
iginal TCNN. With the descent of p(t), the accepted 
ance of the chaos will be decreased and the 
twork will be speeded up to converge to a fixed 
int with fewer iterations. Extensive simulations are 
rformed, and the results verify that the proposed 
proved model can find satisfactory solutions on 
veral RNA sequences. The proposed TCNN is 
perior to the original one in light of the time for 
aching stable state. 

his paper is organized as follows: the problem 
rmulation is presented in the next section. In 

ection 3, the transiently chaotic neural network is 
iefly described. The improved TCNN model is 
ven and compared with the original model in 
ection 4. The simulation results are showed in 
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ection 5 and finally we give some general remarks 
 conclude this paper. 

 
2   Problem Formulation 
In order to utilize neural network to predict RNA 
secondary structure, at the first all possible stack 
domain candidates are selected and listed for a given 
RNA molecule. A set of adjacent base pairs is called 
stack domain, as showed in Fig.1.  
 

 
 
Fig.1. A simple graph shows stack domain of RNA 
secondary structure 
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he stability of RNA secondary structure is 
aluated by free energy. The most stable secondary 

ructures, those having the lowest free energy, are 
ng chains of stack domains. Much progress has 
en made on the problem of assigning free energy 
lues to substructures. The most useful free energy 
ta have been extrapolated from experiments on 
rticular kinds of RNA carried out by Tinoco and 
hlenbeck [9] [10]. For stack domain, the free 
ergy is calculated according to Table 1(units is 
cal/mol). 

Table 1. Free energy calculation 

5’-3’\3’-5’ A-U U-A G-C C-G 

A-U -1.2 -1.8 -2.1 -2.1 
U-A -1.8 -1.2 -2.1 -2.1 
G-C -2.1 -2.1 -4.8 -4.8 
C-G -2.1 -2.1 -3.0 -4.8 

 
Some constraints on the forming of stack domain 

must be made here. We represent an RNA 
molecule as a sequence S: s1, s2… sm, and R= R1, R2, 
R3, ·····Rn is a set of stack domain candidates, and e1, 
e2, e3, ·····en are free energy values of these stack 
domain candidates calculated according to Table 1. 
(i, j) is in R if and only if si and sj are paired. 
Constrains are described as follows: 

1. Only Watson-Crick pairs can be included in 
stack domains. That is if R contains (i, j) then si 

and sj are either G and C, or C and G, or A and U, 
or U and A. 

2. There is no overlap of pairs. If R contains (i, j), 
then it cannot contain (i, k) if k≠j or (k, j) if k≠i. 

3. Knots are not allowed. If h<i<j<k, then R cannot 
contains both (h, j) and (i, k). 

4. There is no sharp U-turn in secondary structure. 
That is If R contains (i, j), then j-i>3. 
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ase pairs with the knots or overlap are called 
consistencies in this paper. According to the above 
alysis, RNA secondary structure prediction can be 
nsidered as the optimization problem. This 
timization problem can be formulated by an 
jective function whose minimum value 
rresponds to the most stable RNA secondary 

ructure. In a reasonable formulation, there are two 
mponents to the objective function: one is used to 
lect stack domain candidates where the sum of free 
ergy is the lowest; the other is used to guarantee 
ere is no inconsistency in RNA secondary 
ructure. Thus, this optimization problem can be 
athematically formulated as follows: 
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3 The Transiently Chaotic Neural 

 Hopfield neural network (HNN) to 

radient descent dynamics, 

nn
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cij is a factor that indicates there is an 
consistency or not. If both Ri and Rj are selected 

and there is an inconsistency between them, then cij 
= 1; If both Ri and Rj are selected and there is no 
inconsistency between them, then cij = 0. 
 

Network 
Applying the
solve combinatorial optimization problems is a 
popular method since Hopfield and Tank’s seminal 
paper [11]. Although the HNN guarantees 
convergence to a stable equilibrium point due to its 
gradient descent dynamics, the major weakness is 
that it often suffers from the local minimum 
problems. Although many methods have been 
presented to improved it [12] [13] [14], the results are 
not always satisfactory. 
   Instead of utilizing g
many artificial neural networks with chaotic 
dynamics have been investigated [15] [16] [17]. 
Although the dynamics of the chaotic neural network 
has an intriguing property to move chaotically over 
fractal structure in the phase space, without getting 
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stuck at local minima [15] [16], the convergence 
problems of the chaotic dynamics have not been 
satisfactorily solved so far. 

In order to take advantages of both the convergent 
dyn
ha
(T
[1

amics and the chaotic dynamics, Chen and Aihara 
ve proposed a transiently chaotic neural network 
CNN) by modifying the chaotic neural network 
8]. The model is described as: 
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ε ness parameter of the output function (ε 
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chaotic dynamics which eventually converges to a 
s

 
 

   The Improved Transiently Chaotic 

e neuron model is as follows: 
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yi : inter
x

nal state of neuron i, 
i : outp

wij: connection weight form n
Ii : input bias of neuron
 : damping factor of nerve membrane ( 0≤k≤1), 
 : positive scaling paramete
zi(t): self-feedback connection weight or 
refractory strength (zi(t)≥0), 
β : damping factor of the time-dependent zi(t) (0≤
β≤1), 
I0 : positive parameter, 
 : steep
0). 

This neural network has actually transiently 

table equilibrium point through successive 
bifurcations like a route of reversed 
period-doubling bifurcations, with the temporal 
evolution of a new variable zi(t) according Eq.(5). 
The variable zi(t) corresponds to the temperature in 
usual stochastic annealing process. Thus, Eq.(5) 
represents an exponential cooling schedule for the 
annealing. 

4
Neural Network 
We use a single neuron model to show the dynamics 
of the TCNN. The singl
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Fig.2 sh
itial condition y(0)=1. From Fig.2, we can see that 
ith exponential damping of z(t), the neuron output 
t) gradually transits from chaotic behavior to a 
xed point through period-doubling bifurcations; 
at is x(t) behaves erratically and unpredictably 
ring the first 400 iterations and eventually 
nverges to a stable fixed point. But the neuron can 
t reach stable state even after 3000 iterations. no

 

 

Fig.2. The time evolution of output x in the single 
 

m el of TCNN 
 

introduce a variable p(t), the acceptance probability 
of c
m

od

In order to overcome this disadvantage we 

 haos into the equations of the TCNN. The new 
odel of the TCNN can be described as follows: 
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δ δwhere is random number(0< <1) and λ is
damping factor of 

 
p(t). 

The difference between the improved TCNN and 
the original TCNN is the acceptanc probability f 
chaos p(t). Variable p(t

e  o
) is used to decide if the 

chaos term ))()(( 0Itxtz ii −−  will be calculated 
or not. If the chaos term is accepted, the network 
will have the mics as the original 
TCNN. With the descent of p(t), the accepted 
chance of the chaos will be decreased and the 
network will be speeded up to converge to a fixed 
point with fewer iterations. We examine these 
characteristics using a single model based on 
Eqs.(9)-(13). p(0) and λ are set to 1 and 0.005, 
respectively and other parameters are set as same 
as the original TCNN. Fig.3 shows the time 
evolution of output x in the single model of the 
improved TCNN. 
 

 same chaotic dyna

 
 
Fig.3. The time evolution of output x in the single 
m
 

odel of the improved TCNN 

 comparison with the 
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ased on Eqs.(9)-(13), the improved TCNN can find 
A sequence. Consider 
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se
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T  

se
ε=1/250; k=0.9; α=0.001; I =0.65;  

z
e secondary structure predicted by 

the
I roposed 

algo
si arried out on three RNA 
sequ
C
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Fig.3 shows that the proposed TCNN uses less 
iteration to reach stable state in
o inal one. The proposed model uses only 200 

rations to reach stable state. The results verify that 
e proposed TCNN model outperforms than the 
iginal one in respects to convergence speed. 

   Simulation Results 5
B
its secondary structure for a RN
the folding of a short RNA sequence with 31 bases 

’ and 3’ represent the start and the end of a RNA 
quence): 
 
5’---ACCCCCUCCUUCCUUGGAUCAAGGGG

UCAA---3’ 

he values of the parameters in Eqs.(9)-(13) are
t as follows: 

0 

(0)=0.08; β=0.02; p(0)=1.0; λ= 0.001 
Fig.4 shows th
 improved TCNN. 
n order to verify the effectiveness of the p
rithm for RNA secondary prediction, extensive 

mulations has been c
ences. All the simulations were implemented in 

++ on PC (CPU:1.7GHz). The values of parameters 
e set as the same as RNA sequence with 31 bases. 
or each of algorithms, the simulation program ran 
0 times. The results that we recorded for each RNA 
quence are the lowest energy and the steps for 
aching stable state. The comparisons were arranged 
 Table 2. The column “n” represents the number of 
e stack domain candidates. 
 

 
 

dary structure 
y the improved TCNN 

Fig.4. Secon of RNA sequence with 31 
bases predicted b
 

Example 1: 61 bases of RNA sequence 

G GUC
CUUCCUC---3’ 

 
E

C GGGUGAGGUCGGUGG
UUCAAGUCCACUCAGGCCUACCA---3’ 

 
E

C

5’---ACAGGAGUAAUUCCCGCCGAAACAG
GUUUUCACCCUUCCUUUCUUCGGGU

xample 2: 77 bases of RNA sequence 
5’---AGGCUUGUAGCUCAGGUGGUUAGAG

GCACCCCUGAUAA

xample 3: 120 bases of RNA sequence 
5’---UGCCUGGCGGCCUUAGCGCGGUGGU

CCACCUGACCCCAUGCCGAACUCAGAAG 
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mparisons in Table 2, we can see that 
the proposed TCNN performed better than the 
or

2
m
fo
h
st
 
T NA sequence 

E

AAACGCCGUAGCGCCGAUGGUAGUGUGGGG
CUCCCCAUGCGAGAGUAGGGAACUGCCAGGC
U---3’ 

From the co

iginal TCNN with respect to the steps for reaching 
stable state. Although the original TCNN found the 
optimal folding for some examples, it used more than 

000 steps for all the three examples. The proposed 
odel used less that 300 steps to reach stable states 
r all examples. That is to say the proposed TCNN 

as the ability to converge to a fixed point with fewer 
eps. 

able 2. Simulation results on R

xample n Original Proposed 

Example1  47) ) 16 -39.90(23 -30.90(264
 51 -39.90(2489) -39.90(261) 

Example2 22 

ple3 56 

-43.50(2531) -43.50(261) 

 80 -49.80(2515) -49.80(269) 
Exam -68.70(2129) -69.90(272) 
 177 -73.80(2743) -82.20(270) 

 
Takefuji it o for 

comparison. Hopfield neural network is used in his 
alg
3
ca
im
th
T
an
so

T
and the improved TCNN model 

Proposed 

algor hm was als  executed 

orithm to predict RNA secondary structure. Table 
 shows the comparison of the lowest energy 
lculated by the Takefuji algorithm and the 
proved TCNN model. From Table 3, we can see 

at the improved model found the same value as the 
akefuji algorithm on Example 1. But, on Example 2 
d Example 3, the improved model found better 
lutions than the Takefuji algorithm.  

 
able 3. Comparison between Takefuji algorithm 

Example n Takefuji 

Example1  16 -39.90 -30.90 
 51 -39.90 -39.90 

Example2 

ple3 56 
 

22 -43.50 -43.50 

 80 -43.50 -49.80 
Exam
 

-65.10 
-76.20 

-69.90 
-82.20 177

 
 
6   Conclusion 

an improved transiently chaotic 
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