A Nonlinear Evolution System of Partial Differential Equations With p-Laplacian and Negative Nonlineariry

Nelson N. de O. Castro
Departamento de Matemática
UFPB: João Pessoa - Paraíba - Brazil
&
Jorge Ferreira
UFSJ: São João del Rei - Minas Gerais - Brazil
June 2006

Abstract

In this paper we prove the existence of weak solutions of a mixed problem associated to the system

$$\begin{align*}
 u'' + Au - \Delta u' - |v|^{\rho+2}|u|^\rho u &= f_1 \\
 v'' + Av - \Delta v' - |u|^{\rho+2}|v|^\rho v &= f_2
\end{align*}$$

(1)

where Δ is the usual Laplacian operator in \mathbb{R}^n and A is the pseudo-Laplacian operator given by

$$Au = -\sum_{i=1}^{n} \frac{\partial U}{\partial x_i}, \quad \text{with} \quad U = \left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i},$$

$p > 2$ and ρ satisfies a technical condition.

Keywords: p-Laplacian, Young Inequality, Compactness.

1 Introduction

In the paper ([2]) the author has studied a similar evolution system with p-Laplacian operator where the nonlinear functional terms $|v|^{\rho+2}|u|^\rho u$ and $|u|^{\rho+2}|v|^\rho v$ are preceded by the plus signal. Now we study the existence of weak solutions to the system

$$\begin{align*}
 u'' + Au - \Delta u' - |v|^{\rho+2}|u|^\rho u &= f_1 \\
 v'' + Av - \Delta v' - |u|^{\rho+2}|v|^\rho v &= f_2
\end{align*}$$

(2)

The crucial difference between the system (2) and that one we have studied in ([1]) is the presence of the minus signal preceding the nonlinear terms $|v|^{\rho+2}|u|^\rho u$ and $|u|^{\rho+2}|v|^\rho v$. It conduct us to a different way of calculating the necessary estimates we need in order to solve the problem (2).
2 Notation and Main Results

2.1: Let Ω be a bounded regular domain of \mathbb{R}^n, $T > 0$ be a real number and $Q = \Omega \times]0, T[$. We denote by $(\ , \)$, $\| \ \|$ and $(\ , \)$, $|\ |$ the inner product and norm in $H^1_0(\Omega)$ and $L^2(\Omega)$, respectively.

If X is a Banach space we denote by $L^p(0, T; X)$, $1 \leq p \leq \infty$, the Banach space of all X-valued measurable function $u :]0, T[\rightarrow X$, such that $\| u(t) \|_X$ belongs to $L^p(0, T)$.

If $1 \leq p < \infty$, then

$$\| u \|_{L^p(0, T; X)} = \left(\int_0^T \| u(t) \|_X^p \ dt \right)^{\frac{1}{p}}$$

defines the norm on $L^p(0, T; X)$. ([4])

The norm on $L^\infty(0, T; X)$ is defined by

$$\| u \|_{L^\infty(0, T; X)} = \text{ess sup}_{0 \leq t \leq T} \| u(t) \|_X.$$

2.2: Let $n \in \mathbb{N}$, $p \in \mathbb{R}$, $n > p$, $p > 2$.

If

$$-1 < \rho \leq \frac{4(1 - n + p)}{2(n - p - 1) + np}$$

then

$$\rho < \frac{4}{np - 2}.$$

2.3: If $n \in \mathbb{N}$ and

$$4n + 2 \quad 4 + n < p < n \quad \text{then} \quad \frac{4}{np - 2} < \frac{1}{n - p}$$

2.4: If

$$\theta = \frac{2np(\rho + 2)}{(np - 2)(\rho + 2) + 2np(\rho + 1)}$$

and

$$\delta = \frac{2np(\rho + 2)}{(np + 2)(\rho + 2) - 2np(\rho + 1)}$$

where n, p and ρ are as before, then:

1. $1 < \theta < \frac{\rho + 2}{\rho + 1}$
2. $1 < \delta < \frac{np}{n - p}$
3. $\frac{1}{\theta} + \frac{1}{\delta} = 1$

2.5: Let

$$\alpha = \frac{\rho + 2}{(\rho + 1)\theta} \quad \text{and} \quad \beta = \frac{\rho + 2}{(\rho + 2) - (\rho + 1)\theta}.$$

Then we have:

1. $\alpha > 1$, $\beta > 1$
2. $\theta \beta = \frac{2np}{np - 2}$
3. \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \)

2.6: \(\mathcal{W}^{1,p}_0(\Omega) \hookrightarrow L^q(\Omega) \), if \(1 \leq q \leq \frac{np}{n-p} \), given that \(n > p \) and \(p \geq 1 \).

2.7: Let \(u, v \in \mathcal{W}^{1,p}_0(\Omega) \). Then,

1. \(uv \in L^{p+2}(\Omega) \)
2. \(|v|^{p+2}|u|^\rho u = |u|^{p+2}|v|^\rho v \in L^\theta(\Omega) \).

3 Existence Theorem

Let \(n, p, \rho \) be as before and suppose that

\[
\begin{cases}
 f_1, f_2 \in L^2(0,T;L^2(\Omega)) \\
 u_0, v_0 \in \mathcal{W}^{1,p}_0(\Omega) \\
 u_1, v_1 \in L^2(\Omega)
\end{cases}
\]

(3)

Then there exist functions \(u, v : Q \rightarrow \mathbb{R} \) such that :

\[u, v \in L^\infty(0,T;\mathcal{W}^{1,p}_0(\Omega)) \]

(4)

\[u', v' \in L^\infty(0,T;L^2(\Omega)) \]

(5)

\[
\begin{align*}
\frac{d}{dt}(u'(t), w) + (Au(t), w) + (u'(t), w) - \\
- \langle |v(t)|^{p+2}|u(t)|^\rho u(t), w \rangle &= (f_1(t), w) \\
\frac{d}{dt}(v'(t), w) + (Av(t), w) + (v'(t), w) - \\
- \langle |u(t)|^{p+2}|v(t)|^\rho v(t), w \rangle &= (f_1(t), w)
\end{align*}
\]

(6) (7)

para todo \(w \in \mathcal{W}^{1,p}_0(\Omega) \), in the sense of distributions on \(]0,T[\).

Proof. We will essentially use Galerkin’s method, compactness and Young’s Inequality.

Let \(\mathbb{H}_s^0(\Omega), s > 1 + n\left(\frac{1}{2} - \frac{1}{p}\right) \), be a Hilbert space such that \(\mathbb{H}_0^s(\Omega) \hookrightarrow \mathcal{W}^{1,p}_0(\Omega) \).

We determine a spectral basis \(\{w_j\} \) of \(\mathbb{H}_0^s(\Omega) \) which is an orthonormal complete system in \(L^2(\Omega) \). Let \(V_m = [w_1, w_2, \cdots, w_m] \) be the subspace of \(\mathbb{H}_s^0(\Omega) \) generated by the \(m \) first vectors \(w_1, \ldots, w_m \).

3.1 Approximate Problem

We consider the following approximated problem

\[
(u''_m(t), w) + (Au_m(t), w) + (u'_m(t), w) - \\
\langle |v_m(t)|^{p+2}|u_m(t)|^\rho u_m(t), w \rangle = (f_1(t), w)
\]

(8)
\[(v''(t), w) + \langle Av_m(t), v'_m(t) \rangle + (v'_m(t), w) - \langle |u_m(t)|^{p+2} |v_m(t)|^p v_m(t), w \rangle = (f_2(t), w) \] (9)

\[
\begin{aligned}
&u_m(0) = u_{0m} \rightarrow u_0, \quad \text{in } W^p_0(\Omega) \\
u'_m(0) = u_{1m} \rightarrow u_1, \quad \text{in } L^2(\Omega) \\
v_m(0) = v_{0m} \rightarrow v_0, \quad \text{in } W^p_0(\Omega) \\
v'_m(0) = v_{1m} \rightarrow v_1, \quad \text{in } L^2(\Omega)
\end{aligned}
\] (10)

By Carathedory’s Existence Theorem ([5]) the system (8) - (10) has a solution \(\{u_m, v_m\} \) defined on \([0, t_m]\), \(t_m > 0 \). It is possible to extend this solution to the whole interval \([0, T]\). In order to do it some estimates are necessary.

Estimate 1.

We replace \(w \) for \(u'_m(t) \) and \(v'_m(t) \) in equations (8) and (9), respectively, so that we have:

\[
\begin{aligned}
&(u''_m(t), u'_m(t)) + \langle Au_m(t), u'_m(t) \rangle + (u'_m(t), u'_m(t)) - \\
&- \langle |u_m(t)|^{p+2} |u_m(t)|^p u_m(t), u'_m(t) \rangle = (f_1(t), u'_m(t)) \\
&\quad (v''_m(t), v'_m(t)) + \langle Av_m(t), v'_m(t) \rangle + (v'_m(t), v'_m(t)) - \\
&- \langle |u_m(t)|^{p+2} |v_m(t)|^p v_m(t), v'_m(t) \rangle = (f_1(t), v'_m(t))
\end{aligned}
\] (11)

Adding this two expressions it follows that:

\[
\frac{d}{dt} \left[\frac{1}{2} |u'_m(t)|^2 + \frac{1}{2} |v'_m(t)|^2 \right] + \frac{1}{p} \frac{d}{dt} \| u_m(t) \|_p^p + \frac{1}{p} \| v_m(t) \|_p^p + \\
+ \| u'_m(t) \|^2 + \| v'_m(t) \|^2 = \\
= \frac{1}{\rho + 2} \frac{d}{dt} \| u_m(t) v_m(t) \|_{L^{p+2}(\Omega)}^{p+2} + (f_1(t), u'_m(t)) + \\
+ (f_2(t), v'_m(t)).
\] (13)

Integration in (13) from 0 to \(t < t_m \), implies:

\[
\frac{1}{2} |u'_m(t)|^2 + \frac{1}{2} |v'_m(t)|^2 + \frac{1}{p} \| u_m(t) \|_p^p + \frac{1}{p} \| v_m(t) \|_p^p + \\
+ \int_0^t \| u'_m(s) \|^2 + \| v'_m(s) \|^2) ds \leq \\
\frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{p+2}(\Omega)}^{p+2} + \frac{1}{\rho + 2} \| u_m(0) v_m(0) \|_{L^{p+2}(\Omega)}^{p+2} + \\
+ \frac{1}{2} |u'_m(t)|_0 + \frac{1}{2} |v'_m(0)|_0 + \frac{1}{p} \| u_m(0) \|_p^p + \\
+ \frac{1}{p} \| u_m(0) \|_p^p + \\
+ \int_0^t |(f_1(s), u'_m(s))| ds + \int_0^t |(f_2(s), v'_m(s))| ds
\] (14)

Now, by Cauchy-Schwarz and Young’s Inequalities, we obtain

\[
\int_0^t |(f_1(s), u'_m(s))| ds \leq \frac{c^2}{2} \int_0^T |f_1(s)|^2 ds + \frac{1}{2} \int_0^t \| u'_m(s) \|^2 ds
\]
and,
\[\int_0^t |(f_2(s), v'_m(s))| ds \leq \frac{c^2}{2} \int_0^T |f_2(s)|^2 ds + \frac{1}{2} \int_0^t \| v'_m(s) \|^2 ds \]

Taking these estimates into account, the inequality in (14) can be put in the form,
\[\frac{1}{2} |u'_m(t)|^2 + \frac{1}{2} |v'_m(t)|^2 + \frac{1}{p} \| u_m(t) \|^p + \frac{1}{p} \| v_m(t) \|^p + \frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p \]
\[+ \frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p \]
\[\leq \frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p \]
\[+ \frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p + \frac{1}{p} \| u_m(t) \|^p + \frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p \]
\[+ \frac{1}{p} \| u_m(t) \|^p + \frac{c^2}{2} \int_0^t |f_1(s)|^2 ds + \frac{c^2}{2} \int_0^T |f_2(s)|^2 ds \]

(15)

Analysis of \(\frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p \).

By Hölder and the trivial inequality \(ab \leq \frac{1}{2} (a^2 + b^2) \), we have,
\[\frac{1}{\rho + 2} \| u_m(t) v_m(t) \|_{L^{\rho+2}(\Omega)}^p \leq \frac{1}{2(\rho + 2)} \| u_m(t) \|_{L^{2(\rho+2)}(\Omega)}^{2(\rho+2)} + \frac{1}{2(\rho + 2)} \| u_m(t) \|_{L^{2(\rho+2)}(\Omega)}^{2(\rho+2)} \]

Now by Sobolev Imbedding Theorem ([7]) we have \(W_0^{1,p}(\Omega) \hookrightarrow L^{2(\rho+2)}(\Omega) \), so that
\[\| u_m(t) \|_{L^{2(\rho+2)}} \leq C \| u_m(t) \|_0 \]

and
\[\| v_m(t) \|_{L^{2(\rho+2)}} \leq C \| v_m(t) \|_0 \]

Now taking \(r > 1 \) such that,
\[2(\rho + 2)r = p > 4(\rho + 2), \]
and \(s \) such that \(\frac{1}{r} + \frac{1}{s} = 1 \), we obtain,
\[\frac{C}{2(\rho + 2)} \| u_m(t) \|_0^{2(\rho+2)} \leq \frac{1}{p} \| u_m(t) \|_0^{p/2}.2 + C. \]

Finally, using Young's Inequality once again, we have,
\[\frac{C}{2(\rho + 2)} \| u_m(t) \|_0^{2(\rho+2)} \leq \frac{1}{2p} \| u_m(t) \|_0^p + 2 + C \]

or yet,
\[\frac{C}{2(\rho + 2)} \| u_m(t) \|_0^{2(\rho+2)} \leq \frac{1}{2p} \| u_m(t) \|_0^p + C \]

(16)
and, by similar development,

\[
\frac{C}{2(\rho + 2)} \| v_m(t) \|_0^{2(\rho + 2)} \leq \frac{1}{2p} \| v_m(t) \|_0^p + C \tag{17}
\]

from where we get that,

\[
\frac{1}{\rho + 2} \| u_m(t)v_m(t) \|_{L^{\rho + 2}(\Omega)} \leq \frac{1}{2p} \| u_m(t) \|_0^p + \frac{1}{2p} \| v_m(t) \|_0^p + C.
\]

The constant \(C \) in the analysis we have just made is not the same, evidently, and does not depend on \(m \) and \(t \).

Taking these results into account and remembering the hypothesis in (10), we have from (14) that,

\[
\frac{1}{2} |u_m'(t)|^2 + \frac{1}{2} |v_m'(t)|^2 + \frac{1}{2p} \| u_m(t) \|_0^p + \frac{1}{2p} \| v_m(t) \|_0^p + \int_0^t (\| u_m(s) \|^2 + \| v_m(s) \|^2) ds \leq C, \tag{18}
\]

where the constant \(C \) is independent of \(t \) and \(m \).

From (18) the functions \(u_m(t) \) and \(v_m(t) \) can be extended as a solution of the approximated problem, to the whole interval \([0,T]\).

From (18) we still can get that,

\[
\begin{align*}
(u_m), (v_m) \ &\text{ are bounded sequences in } L^\infty(0,T;W_0^p(\Omega)) \\
(u_m), (v_m) \ &\text{ are bounded sequences in } L^2(0,T;H_0^1(\Omega)) \\
(u_m), (v_m) \ &\text{ are bounded sequences in } L^\infty(0,T;L^2(\Omega))
\end{align*}
\tag{19}
\]

Furthermore, since the p-Laplacian \(A : W_0^{1,p}(\Omega) \rightarrow W^{-1,q}(\Omega) \) is a bounded operator ([6]), where \(\frac{1}{p} + \frac{1}{q} = 1 \) we obtain

\[
(Au_m), (Av_m) \ &\text{ are bounded sequences in } L^\infty(0,T;W^{-1,q}(\Omega)) \tag{20}
\]

Using the inequality ,

\[
\frac{1}{\rho + 2} \| u_m(t)v_m(t) \|_{L^{\rho + 2}(\Omega)} \leq \frac{1}{2p} \| u_m(t) \|_0^p + \frac{1}{2p} \| u_m(t) \|_0^p + C
\]

and the condition,

\[
p > 4(\rho + 2),
\]

we get,

\[
(u_m, v_m) \ &\text{ is a bounded sequence in } L^\infty(0,T;L^{\rho + 2}(\Omega)) \tag{21}
\]

Estimate II.

Using properly the projection operator, ([7]), the chain of Sobolev spaces

\[
H_0^0(\Omega) \hookrightarrow W_0^{1,p} \hookrightarrow H_0^1(\Omega) \hookrightarrow L^2(\Omega) \hookrightarrow H^{-1}(\Omega) \hookrightarrow W^{-1,q} \hookrightarrow H^{-s}(\Omega)
\]

and both equations of the approximated problem, we get that,

\[
(u_m''), (v_m'') \ &\text{ are bounded sequences in } L^2(0,T;H^{-s}(\Omega)) \tag{22}
\]

Passage to the Limit and Initial Conditions.

The necessary results to carry out the passage to limit in the approximated
problem, and obtain a weak solution as in the Theorem, are, Aubin-Lions Compactness, and Lions’ Lemma ([6], ([7]). From these results and boundedness in (19) - (22) we obtain subsequences weak convergent and weak \(\star \) convergent that allow to pass to limit in the nonlinear term. Some properties of monotone operators,([6]), are necessary in order to complete the proof. The proof of initial conditions are standard and so we omit both them here.

References

Author’s address: Nelson Nery de Oliveira Castro
Departamento de Matemática - UFPB
Cidade Universitária - CEP: 58.900-000
João Pessoa - Paraíba - Brasil