Extensions of edge-coloured digraphs

HORTENSIA GALEANA-SÁNCHEZ
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
México, D.F. 04510

ROCÍO ROJAS-MONROY
Facultad de Ciencias
UAEMex
Instituto Literario No. 100, Centro
50000, Toluca, Edo. de México
MEXICO

Abstract: A digraph D is said to be an m-coloured digraph, if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set $N \subseteq V(D)$ of vertices of D is said to be a kernel by monochromatic paths of the m-coloured digraph D, if it satisfies the two following properties: (1) N is independent by monochromatic paths; i.e. for any two different vertices $x, y \in N$, there is no monochromatic directed path between them, and (2) N is absorbent by monochromatic paths; i.e. for each vertex $u \in V(D) - N$, there exists a uv-monochromatic directed path, for some $v \in N$. In this paper we present a method to construct a large variety of m-coloured digraphs with (resp. without a kernel) kernel by monochromatic paths; starting with a given m-coloured digraph D_0. A previous result is generalized.

Key–Words: kernel, kernel by monochromatic paths, m-coloured digraph

2000 Mathematic Subject Classification: 05C20

1 Introduction

For general concepts we refer the reader to [1]. Let D be a digraph; $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D respectively. Let $S_1, S_2 \subseteq V(D)$, an arc (u_1, u_2) of D will be called an S_1S_2-arc whenever $u_1 \in S_1$ and $u_2 \in S_2$; $D[S_1]$ will denote the subdigraph of D induced by S_1; $S_1 \subseteq V(D)$. A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D) - N$ there exists a zN-arc in D.

A digraph D is called a kernel-perfect digraph when every induced subdigraph of D has a kernel. And D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel.

A digraph D is called an m-coloured digraph whenever its arcs are coloured with m colours.

If D is an m-coloured digraph; the closure of D, denoted $\mathcal{C}(D)$ is the m-coloured multidigraph defined as follows: $V(\mathcal{C}(D)) = V(D)$ and $(u, v) \in A(\mathcal{C}(D))$ with colour i if and only if, there exists an uv-monochromatic directed path in D, coloured i.

Clearly D has a kernel by monochromatic paths if and only if $\mathcal{C}(D)$ has a kernel. And D has a kernel if and only if the m-coloured digraph D (where every two different arcs have different colours) has a kernel by monochromatic paths.

In [4] was introduced the s-construction and was defined a digraph $s(S)$ associated to a given digraph D_0; in the same paper was proved that $s(S)$ has a kernel if and only if D_0 has a kernel. Also in [4] was proved that given a kernel-perfect digraph D_0, it is possible to construct a large variety of critical kernel imperfect digraphs containing D_0 as an induced subdigraph. More results concerning the existence of kernels in s-constructions and s-extensions of a given digraph D_0 can be found in [5] and [6].

Sufficient conditions for the existence of a kernel in a digraph have been investigated by several authors, namely Von Neumann and Morgenstern [13], Richardson [10], Duchet and Meyniel [2] and Galeana-Sánchez and Neumann-Lara [3]. The concept of a kernel is very useful in applications; and clearly the concept of a kernel by monochromatic paths generalizes those of a kernel. Sufficient conditions for the existence of a kernel by monochromatic paths in m-coloured digraphs have been investigated by several authors: for example in [12] Sands et al. proved that any 2-coloured digraph has a kernel by monochromatic paths; in [11] Shen Minggang proved that any m-coloured tournament in which each sub-tournament of order 3 is 2-coloured has a kernel by monochromatic paths. In [7] it was proved that if T is an m-coloured tournament such that every directed cycle of length at most 4 is quasi-monochromatic then...
\(\mathcal{C}(T) \) is kernel perfect. A generalization of this result was obtained by Hahn, Illle and Woodrow in [9] they proved that if \(T \) is an \(m \)-coloured tournament such that every directed cycle of length \(k \) is quasi-monochromatic and \(T \) has no polychromatic directed cycles of length \(\ell, \ell < k \), for some \(k \geq 4 \); then \(T \) has a kernel by monochromatic paths. (A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike, and a directed cycle is called polychromatic whenever its arcs allows at least three colours Kernels by monochromatic paths in bipartite tournaments were studied in [8], where it is proved that if \(T \) is a bipartite tournament such that every directed cycle of length \(4 \) is monochromatic, then \(T \) has a kernel by monochromatic paths.

In this paper we define the \(s \)-construction which generalizes de \(s \)-construction. Also we define an \(m \)-coloured digraph \(s(S) \) related to a given \(m \)-coloured digraph \(D_0 \); and we prove that \(s(S) \) has a kernel by monochromatic paths if and only if \(D_0 \) has a kernel by monochromatic paths. This results generalizes the main result of [4] (\(s(S) \) has a kernel if and only if \(D_0 \) has a kernel).

2 Systems and Extensions

In this section we introduce the \(\bar{s} \)-construction. The main result concerning the \(\bar{s} - \text{construction} \) is Theorem 2.2 which enables us to generate a large class of \(m \)-coloured digraphs with (resp. without) kernel by monochromatic paths.

Definition 2.1 Let \(D_0 \) be an \(m \)-coloured digraph. A \(4 \)-tuple \(S_0 = (\mathcal{C}(D_0), U, U_+, U_-) \) will be called an \(\tilde{s}_0 \)-system (over \(D_0 \)) if it satisfies: (i) \(U, U_+ \) and \(U_- \) are sets of vertices with the same cardinality and \(U \subseteq V(D_0) \). (ii) \(V(D_0), U_+ \) and \(U_- \) are mutually disjoint sets. (iii) \(\mathcal{C}(D_0) \) is the closure of \(D_0 \). (iv) If \(u \in U \), then there is no monochromatic directed cycle contained in \(D_0 \), passing by \(u \).

Lemma 2.1 [1]. Let \(D_0 \) be a digraph and \(C \) a closed directed walk in \(D_0 \). Then for each \(u \in V(C) \), there exists a directed cycle contained in \(C \), passing by \(u \).

Lemma 2.2 Let \(D \) be an \(m \)-coloured digraph, \(\mathcal{C}(D) \) its closure and \(u \in V(D) \). There exists a monochromatic directed cycle, coloured \(i \), contained in \(D \) and passing by \(u \) if and only if there is a monochromatic directed cycle coloured \(i \), contained in \(\mathcal{C}(D) \) and passing through \(u \).

Proof: If \(C \) is a monochromatic directed cycle coloured \(i \), contained in \(D \), and passing by \(u \). Then from the definition of \(\mathcal{C}(D) \), clearly we have \(C \subseteq \mathcal{C}(D) \).

Now suppose that there exists a monochromatic directed cycle, \(\gamma \), coloured \(i \), contained in \(\mathcal{C}(D) \) and passing by \(u \). Let \(\gamma = (u = z_0, z_1, \ldots, z_n = u) \); from the definition of \(\mathcal{C}(D) \), we have that for each \(j \in 1, 2, \ldots, n; \) there exists a \(z_{j-1}z_j \)-monochromatic directed path coloured \(i \), clearly the union of these paths is a closed monochromatic directed walk contained in \(D \) and passing through \(u \). Thus from Lemma 2.1 there exists a directed cycle coloured \(i \), contained in \(D \) and passing by \(u \).

In what follows, if \(\tilde{S}_0 = (\mathcal{C}(D), U, U_+, U_-) \) is an \(s_0 \)-system, we shall denote by \(u_+ \) (resp. \(u_- \)) the vertex in \(U_+ \) (resp. \(U_- \)) which corresponds to \(u \in U \) for any fixed bijection from \(U \) to \(U_+ \) (resp. from \(U \) to \(U_- \)).

Definition 2.2 If \(\tilde{S}_0 = (\mathcal{C}(D_0), U, U_+, U_-) \) is an \(\tilde{s}_0 \)-system, we denote by \(\tilde{s}_0(S_0) \) the digraph defined as follows: \(V(\tilde{s}_0(S_0)) = (V(D_0) - U) \cup U_+ \cup U_-; \) \((z,w) \) is an arc of \(\tilde{s}_0(S_0) \) coloured \(i \) if and only if one of the following conditions holds:

(i) \(\{z,w\} \subseteq V(D_0) - U \) and there exists an arc from \(z \) to \(w \) in \(\mathcal{C}(D_0) \), coloured \(i \).

(ii) \(z \in V(D_0) - U, w = u_- \) for some \(u \in U; \) and there exists an arc from \(z \) to \(u \) in \(\mathcal{C}(D) \), coloured \(i \).

(iii) \(z = u_+ \) for some \(u \in U \), \(w \in V(D_0) - U; \) and there exists an arc from \(u \) to \(w \), in \(\mathcal{C}(D) \), coloured \(i \).

(iv) \(z = u_+ \) and \(w = v_- \), for some \(\{u,v\} \subseteq U; \) and there exists an arc from \(u \) to \(v \), in \(\mathcal{C}(D) \), coloured \(i \).

Definition 2.3 An \(\bar{s} \)-system is a 4-tuple \(\bar{S} \) = \((\tilde{S}_0, \bar{\beta}, \bar{U}_+, \bar{U}_-) \) where:

(i) \(\tilde{S}_0 = (\mathcal{C}(D_0), U, U_+, U_-) \) is an \(\tilde{s}_0 \)-system and \(\bar{U}_+ \) and \(\bar{U}_- \) are \(m \)-coloured multigraphs such that \(V(\bar{U}_+ + V(\bar{U}_-) = U_- \).

(ii) \(\bar{\beta} = \{\beta_u \mid u \in U\} \) is a set of mutually disjoint directed paths where each \(\beta_u \) is a \(u_-u_+ \)-directed path of positive even length and \(V(\beta_u) \cap V(\tilde{s}_0(S_0)) = \{u, u_+\} \).

(iii) for each \(u \in U; \) any two consecutive arcs of \(\beta_u \) have different colours and the arc of \(\beta_u \) which incides from \(u_- \) (resp. incides to \(u_+ \)) has a colour which is different from the colour of each arc which incides to \(u \) (resp. from \(u \)) in \(D_0 \).

Definition 2.4 Let \(D_0 \) be an \(m \)-coloured digraph. If \(\bar{S} = (\tilde{S}_0, \bar{\beta}, \bar{U}_+, \bar{U}_-) \) is an \(\bar{s} \)-system, we denote by \(\bar{s}(\bar{S}) \) the edge-coloured multidigraph defined as follows: \(\bar{s}(\bar{S}) = \tilde{s}_0(S_0) \cup U_i \beta_u \cup \bar{U}_+ \cup \bar{U}_- \). The
multidigraph $\tilde{s}(\hat{S})$ will be called an extension of D_0. Notice that if $U = \emptyset$ then $\tilde{s}(\hat{S}) \cong \tilde{s}_0(\hat{S}_0) \cong C(D_0)$.

Definition 2.5 We will say that the multidigraph $\tilde{s}(\hat{S})$ satisfies property (A) if the following condition holds: If there exists an arc from u_+ to u_- (resp. from v_- to v_+) in \tilde{U}_+ (resp. in \tilde{U}_-) coloured i, then there exists an arc from u to v in $C(D_0)$, coloured i.

Definition 2.6 We will denote by g the function defined as follows:

$$g : V(\tilde{s}_0(\hat{S}_0)) \to V(D_0);$$

$$g(z) = \begin{cases}
 u & \text{if } z = u_- \text{ or } z = u_+ \\
 z & \text{if } z \notin U_+ \cup U_-
\end{cases}.$$

Theorem 2.1 Let $\hat{S} = (\tilde{s}_0, \tilde{\beta}, \tilde{U}_+, \tilde{U}_-) \text{ be an } \tilde{s}\text{-system where } \tilde{s}_0 = (C(D_0), U, U_+, U_-)$. Suppose that $\tilde{s}(\hat{S})$ satisfies property (A). Then the following conditions hold.

1. Each $U_+ U_+$-directed path contained in $\tilde{s}(\hat{S})$ contains a directed path $\tilde{\beta}_u$, for some $u \in U$.
2. If T is a monochromatic directed path contained in $\tilde{s}(\hat{S})$ of length at least two, then $V(T) \cap (\bigcup_{u \in U} V(\tilde{\beta}_u) - (U_+ \cup U_-)) = \emptyset$.
3. For any $u \in U$; there is no monochromatic directed path between u_+ and u_- contained in $\tilde{s}(\hat{S})$.
4. If there exists a zw-monochromatic directed path coloured i, contained in $\tilde{s}(\hat{S})$ and with length at least two then $\{z, w\} \subset V(\tilde{s}_0(\hat{S}_0))$, and there exists a $g(z)g(w)$-directed path coloured i (monochromatic) contained in D_0.
5. If T is a u_+u_--monochromatic directed path contained in $\tilde{s}(\hat{S})$ and $\beta_u = (u_+ = z_0, z_1, \ldots, z_n = u_-)$, then $z = z_1$ or $V(T) \subseteq U_-$.

Proof: (1) Let $T = (v = z_0, z_1, \ldots, z_n = v')$ a vv'-directed path with $v \in U_-$ and $v' \in U_+$. Denote by $j_0 = \min \{j \in \{0, 1, \ldots, n\} \mid z_{j+1} \notin U_-\}$ and by $j_1 = \min \{j \in \{0, 1, \ldots, n\} \mid j > j_0 \text{ and } z_j \in U_+\}$; thus $z_{j_0} \in U_-, z_{j_0+1} \notin U_-, z_{j_1} \in U_+$. Now we consider $T_0 = (z_{j_0}, T, z_{j_1})$ (the $z_{j_0}z_{j_1}$-directed path contained in T). Let $u \in U$ be such that $z_{j_0} = u_-$, from the definition of $\tilde{s}(\hat{S})$ we have that every arc of $\tilde{s}(\hat{S})$ starting in u_- ends in U_- or in the second vertex of $\tilde{\beta}_u$; since $z_{j_0+1} \notin U_-$ we have $z_{j_0+1} \in \tilde{\beta}_u$. We conclude that $\tilde{\beta}_u = T_0$. (as $z_{j_i} \in U_+$ we have $z_{j_i} = u_+$).

(2) Suppose that T is a zw-directed path coloured i, contained in $\tilde{s}(\hat{S})$ with length at least two. Let $u \in U$ be and $x \in V(\tilde{\beta}_u) - \{u_+, u_-\}$. Since the arcs incident with x belong to $\tilde{\beta}_u$; and thus they have different colours; we obtain $x \notin V(T) - \{z, w\}$. Now: if $x = z$, then the next vertex of T must be u_+; and from definition of \tilde{s}-system, the colour of (x, u_+) is different from the colour of the next arc of T; a contradiction (as T is monochromatic). If $x = w$, then $(u_-, x) \in A(T)$. From the definition of \tilde{s}-system we have that (u_-, x) has a colour which is different of the colour of any arc incident toward u_-; so T is not monochromatic; a contradiction.

(3) Assume by contradiction that there exists a monochromatic directed path, between u_+ and u_-, for some $u \in U$, contained in $\tilde{s}(\hat{S})$; and let T_0 be such a directed path of minimum length. Let $\tilde{u} \in U$ be such that \tilde{u}_+ and \tilde{u}_- are the terminals of T_0. Since T_0 is monochromatic, coloured, say i; it follows from the definition of $\tilde{s}(\hat{S})$ that $\ell(T_0) \geq 2$. Therefore from (2) we have: $V(T_0) \cap (\bigcup_{u \in U} V(\tilde{\beta}_u) - (U_+ \cup U_-)) = \emptyset$; the function g is defined on $V(T_0)$; and T_0 contains no $\tilde{\beta}_u$ for every $u \in U$. Thus from (1) we have that T_0 is a $\tilde{u}_+ \tilde{u}_-$-directed path coloured i. From the choice of T_0, we have that for any $u \in U - \{\tilde{u}\}$, $\{u_+, u_-\} \not\subseteq V(T_0)$. Thus, function g restricted to $V(T_0) - \{\tilde{u}_-, \tilde{u}_+\}$ is an injective function. If $T_0 = (\tilde{u}_+ = z_0, z_1, \ldots, z_n = \tilde{u}_-)$ then it follows from the definition of $\tilde{s}_0(\hat{S}_0)$ that for each $j \in \{1, \ldots, n\}$ there exists an arc from $g(z_{j-1})$ to $g(z_j)$ coloured i, contained in $C(D_0)$. Therefore $C = (u = g(z_0), g(z_1), \ldots, g(z_n) = u)$ is a monochromatic directed cycle, contained in $C(D_0)$, an passing through u; contradicting that \tilde{S}_0 is an \tilde{s}-system.

(4) Let T be a zw-directed path, coloured i, contained in $\tilde{s}(\hat{S})$, and with $\ell(T) \geq 2$. From (2) we have $V(T) \cap (\bigcup_{u \in U} V(\tilde{\beta}_u) - (U_+ \cup U_-)) = \emptyset$; thus $V(T) \subseteq V(\tilde{s}_0(\hat{S}_0))$ and g is defined for every vertex of T. Now: if $T = (z = z_0, z_1, \ldots, z_n = w)$ then from the definition of $\tilde{s}_0(\hat{S}_0)$ we have that for each $j \in \{1, \ldots, n\}$ there exists in $C(D_0)$, an arc coloured i, from $g(z_{j-1})$ to $g(z_j)$; therefore there exists a $g(z_{j-1})g(z_j)$-directed path coloured i contained in D_0. We conclude that there exists a $g(z)g(w)$-directed path coloured i, contained in D_0.

(5) Let T be a u_+u_--monochromatic directed path, contained in $\tilde{s}(\hat{S})$ and assume that $\tilde{\beta}_u = (u_+ = z_0, z_1, \ldots, z_n = u_-)$. Assume by contradiction that $T \neq (u_-, z_1)$ and $V(T) \not\subseteq U_-$. Let $T = (u_+ = w_0, u_1, \ldots, w_m = z)$. First observe that $w_1 \in U_-$ (otherwise, from the definition of $\tilde{s}(\hat{S})$ we have $w_1 = z_1$; and the coloring of the arcs of $\tilde{\beta}_u$ implies $T = (u_-, z_1)$, contradicting our assumption). Denote by
there exists a N defined as follows: if

\(\ell(T) \geq 2 \), then the assertion follows from (2) and (4). If \(T = (z, w) \), then \(w \notin \bigcup_{u \in U} V(\tilde{\beta}_u - \{u_+\}) \) (as \(z \in (V(\tilde{s}_0(\tilde{S}_0)) - U_-) \) and \(w \notin (\bigcup_{u \in U} V(\tilde{\beta}_u - (U_+ \cup U_-)) \). So \(V(T) \cap (\bigcup_{u \in U} V(\tilde{\beta}_u - (U_+ \cup U_-)) = \emptyset \). It follows from that function \(g \) is defined for \(z \) and \(w \); and from the definition of \(\tilde{s}(\tilde{S}) \), there exists an arc coloured \(i \) from \(g(z) \) to \(g(w) \) in \(C(D_0) \) i.e. there exists a \(g(z)g(w) \)-directed path coloured \(i \) in \(D_0 \).

Case 4(a). \(\{z, w\} \subset V(\tilde{s}_0(\tilde{S}_0)) \).

From (4) in Theorem 2.1 and the definitions of \(\tilde{s}(\tilde{S}) \) and \(g \); we have that there exists in \(D_0 \) a \(g(z)g(w) \)-monochromatic directed path when \(\ell(T) \geq 2 \). When \(\ell(T) = 1 \) it follows from condition (A) that there exists a \(g(z)g(w) \)-monochromatic directed path in \(D_0 \). Since \(\{z, w\} \subset V(\tilde{s}_0(\tilde{S}_0))\), then \(\{z, w\} \subset (N_0 - U) \cup ((\bigcup_{u \in U} N_u) \cap (U_+ \cup U_-)) \). And we have three subcases:

Case 4(a.1). \(\{z, w\} \subseteq N_0 - U \).

In this case \(g(z) = z, g(w) = w \). And there exists a \(zw \)-monochromatic directed path in \(D_0 \); a contradiction (as \(N_0 \) is a kernel by monochromatic paths of \(D_0 \)).

Case 4(a.2). \(z \in (N_0 - U) \) and \(w \in ((\bigcup_{u \in U} N_u) \cap (U_+ \cup U_-)) \) (analogously \(z \in ((\bigcup_{u \in U} N_u) \cap (U_+ \cup U_-)) \) and \(w \in (N_0 - U) \).

Now \(w \in \{u_+, u_-\} \) for some \(u \in U \) and \(w \in N_0 \). From 1 and 2, \(\{u_-, u_+\} \subset N_u \setminus \{u_+, u_-\} \subset N \) and from (3) \(u \in N_0 \). Therefore there exists a \(zw \)-monochromatic directed path \(g(z) = z, g(w) = u \) in \(D_0 \), a contradiction.

Case 4(a.3). \(\{z, w\} \subset (\bigcup_{u \in U} N_u) \cap (U_+ \cup U_-)). \)

\(g(z) = u \) and \(g(w) = v \) for some \(u, v \subset N_0 \). If \(u = v \), then \(\{z, w\} = \{u_+, u_-\} \subset N_0 \cap U \). And there exists a monochromatic directed path in \(\tilde{s}(\tilde{S}) \) between \(u_- \) and \(u_+ \), contradicting (3) in Theorem 2.1. If \(u \neq v \), then there exists a uv-monochromatic directed path contained in \(D_0 \) and with \(\{u, v\} \subset N_0 \); a contradiction.

Case 4(b). \(\{z, w\} \cap V(\tilde{s}_0(\tilde{S}_0)) = \emptyset \).

In this case \(\{z, w\} \subseteq (\bigcup_{u \in U} N_u) - (U_+ \cup U_-) \).

Since each \(N_u \) is a kernel by monochromatic paths; if follows that \(z \in N_u \) and \(w \in N_v \), for some \(u, v \in U \), \(u \neq v \). Thus \(z \in (\tilde{\beta}_u) \) and \(w \in V(\tilde{\beta}_v) \). Clearly, \(z \notin \{u_+, u_-\} \) from the definition of \(\tilde{s}(\tilde{S}) \) we have \(\ell(T) = 1 \), moreover since the only arc which incides from \(z \) is in \(\beta_0 \), we have \(w \in V(\tilde{\beta}_v) \); contradicting that \(V(\tilde{\beta}_u) \cap V(\tilde{\beta}_v) = \emptyset \).

Case 4(c). \(z \notin V(\tilde{s}_0(\tilde{S}_0)) \) and \(w \in V(\tilde{s}_0(\tilde{S}_0)) \) (analogously the case \(z \in V(\tilde{s}_0(\tilde{S}_0)) \) and \(w \notin V(\tilde{s}_0(\tilde{S}_0)) \)).

In this case \(z \in N_u \setminus \{u_+, u_-\} \) for some \(u \in U \) and \(w \notin N_0 \cap U \).

From the definition of \(\tilde{s}(\tilde{S}) \) there is no monochromatic directed path between \(z \) and \(w \) in \(\tilde{s}(\tilde{S}) \); a contradiction.

5. N is absorbent by monochromatic paths.

Let \(x \in (V(\tilde{s}(\tilde{S})) - N) \); we will prove that there exists a \(x \)x-monochromatic directed path, for some \(x \in N \).

Case 5(a). \(x \in V(\tilde{s}_0(\tilde{S}_0)) \).

In this case \(g(x) = x \) and \(x \in (V(D_0) - N) \);
then there exists an \(xy \)-monochromatic directed path, for some \(y \in N_0 \). Thus there exists an arc from \(x \) to \(y \) in \(C(D_0) \). When \(y \notin U \), clearly we have in \(s(\tilde{S}) \) an arc from \(x \) to \(y \) with \(y \in N \). When \(y \in U \), then there exists an arc from \(x \) to \(y _ \) in \(s(\tilde{S}) \), and since \(y \in N_0 \), we have \(y _ \in N \).

Case 5(b). \(x \in V(\tilde{\beta}_u) - \{u_+, u_-\} \) for some \(u \in U \).

Since \(x \notin N \), then \(x \notin N_u \); and there exists an \(xz \)-monochromatic directed path for some \(z \in N_u \) (as \(N_u \) is a kernel by monochromatic paths of \(\beta_u \) or of \((\tilde{\beta}_u) - \{u_+\} \)).

Case 5(c). \(x \in U_+ \) i.e. \(x = u_+ \) for some \(u \in U \).

Since \(x \notin N \); then we have \(u \notin N_0 \). From the definition of \(N_0 \); there exists an \(uy \)-monochromatic directed path in \(D_0 \), for some \(y \in N_0 \). Thus, there exists an arc from \(u \) to \(y \) in \(C(D_0) \). When \(y \notin U \); we have that there exists an \(s(\tilde{S}) \) an arc from \(u_+ \) to \(y \), and from the definition of \(N \); \(y \in N \). When \(y \in U \) we obtain that there exists an arc from \(u_+ \) to \(y _ \) in \(s(\tilde{S}) \), and \(y _ \in N \) (as \(y \in N_0 \)).

Case 5(d). \(x \in U_- \) i.e. \(x = u_- \) for some \(u \in U \).

Since \(x \notin N \), then from the definition of \(N \); we have \(x \notin N_u \) i.e. \(u \notin N_u \). Therefore \(N_u \) is not a kernel by monochromatic paths of \(\tilde{\beta}_u \) and then \(N_u \) is a kernel by monochromatic paths of \(\beta_u - \{u_+\} \).

Thus, there exists a \(u_-z \)-monochromatic directed path in \(\tilde{\beta}_u - \{u_+\} \), with \(z \in N_u \). N \).

We conclude from 4 and 5 that \(N \) is a kernel by monochromatic paths of \(s(\tilde{S}) \).

Now suppose that \(N \) is a kernel by monochromatic paths of \(s(\tilde{S}) \). First we prove the following assertion:

6. \(u_+ \in N \) if and only if \(u_- \in N \).

First suppose \(u_+ \in N \) and let \(\tilde{\beta}_u = (u_- = z_0, z_1, \ldots, z_n = u_+) \), it follows from the definition of \(\tilde{s} \)-system that \(z_1 \notin N \). Now assume by contradiction \(u_- \notin N \). Since \(N \) is a kernel by monochromatic paths of \(s(\tilde{S}) \), then there exists a \(u_-z \)-monochromatic directed path, say, \(T \), in \(s(\tilde{S}) \) for some \(z \in N \); since \(z_1 \notin N \) it follows from (5) Theorem 2.1 that \(V(T) \subseteq U_- \). Therefore the function \(g \) restricted to \(V(T) \) is injective and from the condition (A) we have that there exists a \(g(u_-)g(z) \)-monochromatic directed path contained in \(C(D_0) \). It follows that there exists an arc from \(g(u_-) \) to \(g(z) \) in \(C(D_0) \), and from the definition of \(s(\tilde{S}) \), there exists an arc from \(u_+ \) to \(\tilde{u} _ \) in \(s(\tilde{S}) \) with \(\tilde{u} \in U \); \(z = \tilde{u} _ \); i.e. there exists an arc from \(u_+ \) to \(z \) in \(s(\tilde{S}) \) with \(\{u_+, z\} \subseteq N \); a contradiction.

Now suppose \(u_- \in N \); and let \(\tilde{\beta}_u = (u_- = z_0, z_1, \ldots, z_n = u_+) \). Since \(N \) is independent by monochromatic paths, we have \(z_1 \notin N \). Now \(z_2 \notin N \) (from the definition of \(\tilde{s} \)-system), and \(z_3 \notin N \); continuing this way, we get \(u_+ \in N \).

Now we will prove that \(N_0 = \{g(z) \mid z \in N - (\bigcup_{u \in U} V(\tilde{\beta}_u) - (U_+ \cup U_-))\} \) is a kernel by monochromatic paths of \(D_0 \).

7. \(N_0 \) is independent by monochromatic paths in \(D_0 \).

Let \(z, w \in (N - (\bigcup_{u \in U} \tilde{\beta}_u) - (U_+ \cup U_-)) \) be such that \(g(z) = x \) and \(g(w) = y \). Assume by contradiction that there exists an \(xy \)-monochromatic directed path in \(D_0 \); this implies that there exists an arc from \(x \) to \(y \) in \(C(D_0) \).

We will analyze the following four possible cases:

7(a). \(x \notin U \) and \(y \notin U \).

In this case \(z = x \), \(w = y \). From definition of \(s(\tilde{S}) \); there exists an arc from \(z \) to \(w \) in \(s(\tilde{S}) \) with \(\{z, w\} \subseteq N \); a contradiction.

7(b). \(x \in U \) and \(y \notin U \).

Now, \(w = y \) and we may assume (from 6) that \(z = x_+ \). From definition of \(s(\tilde{S}) \); there exists an arc from \(x_+ \) to \(y \) in \(s(\tilde{S}) \) i.e. \(z \) to \(w \) with \(\{z, w\} \subseteq N \); a contradiction.

7(c). \(x \notin U \), \(y \in U \).

In this case \(z = x \) and from 6 we may assume \(w = y \). From definition of \(s(\tilde{S}) \); there exists an arc from \(z \) to \(w \) with \(\{z, w\} \subseteq N \); a contradiction.

7(d). \(x \in U \), \(y \in U \).

From 6 we may assume \(z = x_+ \) and \(w = y \). From definition of \(s(\tilde{S}) \); there exists an arc from \(z \) to \(w \) with \(\{z, w\} \subseteq N \); a contradiction.

8. \(N_0 \) is absorbent by monochromatic paths in \(D_0 \).

Let \(x \in (V(D_0) - N_0) \) be; we will prove that there exists an \(xy \)-monochromatic directed path in \(D_0 \), for some \(y \in N_0 \).

8(a). \(x \notin U \).

In this case \(x \in (V(s_0(\tilde{S}_0)) - (U_+ \cup U_-)) \) and then \(g(x) = x \). Since \(x \notin N_0 \), then \(x \notin N \); and there exists an \(xw \)-monochromatic directed path, say, \(T \), in \(s(\tilde{S}) \), for some \(w \in N \). Now from (6) in Theorem 2.1 we have \(V(T) \cap (\bigcup_{u \in U} V(\tilde{\beta}_u) - (U_+ \cup U_-)) = \emptyset \) and there exists a \(g(x)g(w) \)-monochromatic directed path in \(D_0 \). Thus \(g(w) \in N_0 \) (recall \(w \in N \)), and there exists an \(xy \)-monochromatic directed path in \(D_0 \), with \(y \in N_0 \); \(y = g(w) \).

8(b). \(x \in U \).

Since \(x \notin N_0 \), then \(x_+ \notin N \) and \(x_- \notin N \). Therefore there exists an \(x_+w \)-monochromatic directed path in \(s(\tilde{S}) \), say \(T \), for some \(w \in N \). From (6) in Theorem 2.1, we have \(V(T) \cap (\bigcup_{u \in U} V(\tilde{\beta}_u) - (U_+ \cup U_-)) = \emptyset \) and there exists a \(g(x_+)g(w) \)-monochromatic directed path in \(D_0 \), (as \(x_+ \notin U_- \)); moreover \(g(w) \in N_0 \) (because \(w \in N \)). We conclude
that there exists an xy-monochromatic directed path in D_0 with $y = g(w) \in N_0$.

References:

