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Abstract: We consider the flow of a non-Newtonian incompressible second-grade fluid in an uniform rec-
tilinear pipe and generalize it by introducing a shear-dependent viscosity function of power law type.
The full 3D set of equations is reduced to a one-dimensional problem involving only time and one spatial
variable. This is done using a director theory for fluid dynamics, also called Cosserat theory. An axisym-
metric unsteady relationship between mean pressure gradient and volume flow rate over a finite section
of the pipe and the corresponding equation to the wall shear stress are derived from this theory.

Key–Words: Cosserat theory, generalized second-grade fluid, axisymmetric motion, volume flow rate,
pressure gradient, unsteady rectilinear flow, power law viscosity.

1 Introduction

The Cauchy stress tensor for a general incom-
pressible and homogeneous Rivlin-Ericksen fluid
of second-grade is given by (see e.g. Colemann
and Noll [7])

T = −p∗I + µA1 + α1A2 + α2A
2
1 (1)

where p∗ is the pressure, −p∗I is the spherical
part of the stress due to the constraint of incom-
pressibility, µ is the constant viscosity, and α1,
α2 are material constants usually called normal
stress moduli. The kinematical first two Rivlin-
Ericksen tensors A1 and A2 are defined through
(see Rivlin and Ericksen [15])

A1 = ∇v∗ +
(

∇v∗
)T

(2)

and

A2 =
d

dt
A1 + A1∇v∗ +

(

∇v∗
)T

A1 (3)

where v∗ is the velocity field and d
dt

(·) denotes
the material time derivative. In equation (3) the
material time derivative of the tensor A1 is given
by

d

dt
A1 =

∂A1

∂t
+ v∗ · ∇A1.

The model associated to the constitutive equa-
tion (1) has been studied by several authors (see

e.g. [1], [8], [10]) under different perspectives. In
this work, we consider an extension of the Rivlin-
Ericksen fluid model of second-grade by introduc-
ing a shear-dependent viscosity (see e.g. [14],
[17]). This means that the constitutive equation
(1), becomes

T = −p∗I + µ
(

|γ̇|
)

A1 + α1A2 + α2A
2
1 (4)

where
µ
(

|γ̇|
)

: R
+ → R

+

is the shear-dependent viscosity function and γ̇ is
a scalar measure of the rate of shear defined by
γ̇ =

√
2D : D with

D :=
1

2

(

∇v∗ +
(

∇v∗
)T )

being the rate of deformation tensor. The par-
ticular functional dependence of the viscosity on
shear-rate is generally chosen in order to fit ex-
perimental data and, in the case of a power law
fluid model, is given by

µ(|γ̇|) = k|γ̇|n−1 (5)

where the parameters k and n are called the con-
sistency and the flow index (positive constants),
respectively. If n = 1 in (5), the Cauchy stress
tensor (4) corresponds to the second-grade consti-
tutive equation (1) with constant viscosity µ = k.
If n < 1 in (5) then

lim
|γ̇|→+∞

µ(|γ̇|) = 0, lim
|γ̇|→0

µ(|γ̇|) = +∞,
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and we have a shear-thinning fluid behaviour (vis-
cosity decreases monotonically with shear rate).
For n > 1 in (5), we get

lim
|γ̇|→+∞

µ(|γ̇|) = +∞, lim
|γ̇|→0

µ(|γ̇|) = 0,

and the fluid shows a shear-thickening behaviour
(viscosity increases with shear rate). This theo-
retical viscosity model has limited applications to
real fluids due to the unboundedness of the viscos-
ity function (see Figure 1), but is widely used and
can be accurate for specific flow regimes. The the-
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Figure 1: Power law model: (left) shear-thinning viscos-
ity and (right) shear-thickening viscosity. In both cases the
plots were obtained for different values of the flow index.

oretical study of the model associated to the con-
stitutive equation (4), namely existence, unique-
ness and regularity of classical and weak solutions
with any α1, α2 ∈ R is an open problem. In this
paper we are interested in the numerical study of
the model associated to equation (4), using the
director approach (also called Cosserat theory)
developed by Caulk and Naghdi [6]. This the-
ory includes an additional structure of directors
(deformable vectors) assigned to each point on a
space curve (Cosserat curve), where a 3D system
of equations is replaced by a 1D system depend-
ing on time and on a single spatial variable. In
the first half of the last century, this theory has
been used in studies of rods, plates and shells, see
e.g. Ericksen and Truesdell [9], Green et al. [11].
Later, the Cosserat theory has been developed by
Caulk and Naghdi [6], Green and Naghdi [12], [13]
in studies of unsteady and steady flows, related
to fluid dynamics. Recently, this theory approach
has been applied to blood flow in the arterial sys-
tem by Robertson and Sequeira [16] and also by
Carapau and Sequeira [2], [3], [4], [5] considering
Newtonian and non-Newtonian flows.

Using the director theory (see [6]) the velocity
field, can be approximated by the following finite

summation1:

v∗ = v +
k

∑

N=1

xα1
. . . xαN

W α1...αN
, (6)

with

v = vi(z, t)ei, W α1...αN
= W i

α1...αN
(z, t)ei. (7)

Here, v represents the velocity along the axis of
symmetry z at time t, xα1

. . . xαN
are polynomial

weighting functions with order k (the number k
identifies the order of the hierarchical theory and
is related to the number of directors), the vec-
tors W α1...αN

are the director velocities which
are completely symmetric with respect to their in-
dices and ei are the associated unit basis vectors.
From this velocity field approach that we use to
predict some of the main properties of the three-
dimensional problem, we obtain the axisymmet-
ric unsteady relationship between mean pressure
gradient and volume flow rate over a finite sec-
tion of a straight rigid and impermeable pipe with
circular cross-section and constant radius. Also,
we obtain the correspondent equation for the wall
shear stress.

2 Flow modelling

We consider an homogeneous fluid moving within
a straight, rigid and impermeable pipe with cir-
cular cross-section and constant radius φ, the do-
main Ω (see Figure 2) contained in R

3, where the
boundary ∂Ω is composed by Γ1 (proximal cross-
section), Γ2 (distal cross-section) and by Γw the
lateral wall of the pipe.

Γ1

Γ2Γw

pe

τ1

τ2 x1

x2

z

Figure 2: Fluid domain Ω with the components of the
surface traction vector τ1, τ2 and pe. The rectangular carte-
sian coordinates are denoted by xi (i = 1, 2, 3) and for
convenience we set x3 = z.

Using the notation adopted in Caulk and
Naghdi [6], the components of the three-
dimensional equations governing the axisym-
metric motion of an incompressible generalized

1Latin indices subscript take the values 1, 2, 3, Greek
indices subscript 1, 2. Summation convention is employed
over a repeated index.
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second-grade viscous fluid, without body forces,
in an uniform rectilinear pipe, are given by






























ρ
(∂v∗

∂t
+ v∗,iv

∗
i

)

= ti,i,

in Ω × (0, T ),
v∗i,i = 0,

ti = −p∗ei + σijej , t = ϑ∗
i ti,

(8)
with the initial condition

v∗(x, 0) = v0(x) in Ω, (9)

and the homogeneous Dirichlet boundary condi-
tion

v∗(x, t) = 0 on Γw × (0, T ), (10)

where v∗ = v∗i ei is the velocity field and ρ is the
constant fluid density. Equation (8)1 represents
the balance of linear momentum and (8)2 is the
incompressibility condition. In equation (8)3, t

denotes the Cauchy stress tensor on the surface
whose outward unit normal is ϑ∗ = ϑ∗

i ei, and ti
are the components of t, and σij are the compo-
nents of the extra stress tensor, given by

σij = µ
(

|γ̇|
)(

A1

)

ij
+ α1

(

A2

)

ij
+ α2

(

A1

)

ik

(

A1

)

kj

(11)
where the viscosity function is given by (5). The
components of the first two Rivlin-Ericksen ten-
sors are given by

(

A1

)

ij
=

∂v∗i
∂xj

+
∂v∗j

∂xi
, (12)

and

(

A2

)

ij
=

∂
(

A1

)

ij

∂t
+ v∗k

∂
(

A1

)

ij

∂xk

+
(

A1

)

ik

∂v∗k
∂xj

+
∂v∗k
∂xi

(

A1

)

kj
. (13)

We assume that the lateral surface Γw of the
axisymmetric pipe is defined by

φ2 = xαxα, (14)

and the components of the outward unit normal
to this surface are

ϑ∗
α =

xα

φ
, ϑ∗

3 = 0. (15)

Since equation (14) defines a material surface, the
velocity field must satisfy the kinematic condition

−xαv∗α = 0 (16)

on the boundary (14). Averaged quantities such
as flow rate and average pressure are needed to
study 1D models. Consider S(z, t) as a generic
axial section of the pipe at time t defined by the
spatial variable z and bounded by the circle de-
fined in (14) and let A(z, t) be the area of this
section S(z, t). Then, the volume flow rate Q is
defined by

Q(z, t) =

∫

S(z,t)
v∗3(x1, x2, z, t)da, (17)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)
p∗(x1, x2, z, t)da. (18)

3 Director theory approach

Using the director theory approach (6) it follows
(see [6]) that the approximation of the velocity
field v∗ = v∗i (x1, x2, z, t)ei, with nine directors, is
given by

v∗ =
[

x1(ξ + σ(x2

1
+ x2

2
)) − x2(ω + η(x2

1
+ x2

2
))

]

e1

+
[

x1(ω + η(x2

1
+ x2

2
)) + x2(ξ + σ(x2

1
+ x2

2
))

]

e2

+
[

v3 + γ(x2

1
+ x2

2
)

]

e3 (19)

where ξ, ω, γ, σ, η are scalar functions of the spa-
tial variable z and time t. The physical signifi-
cance of these scalar functions in (19) is the fol-
lowing: γ is related to transverse shearing motion,
ω and η are related to rotational motion (also
called swirling motion) about e3, while ξ and σ
are related to transverse elongation. Also, from
Caulk and Naghdi [6], the expression of the stress
vector on the lateral surface in terms of its normal
and τ1, τ2, pe is given by

tw =
[ 1

φ

(

− pex1 − τ2x2

)]

e1

+
[ 1

φ

(

− pex2 + τ2x1

)]

e2

+
[

τ1

]

e3. (20)

Now, taking into account the boundary conditions
(10) and incompressibility condition (8)2, the ve-
locity field (19), for a flow in a rigid pipe, without
rotation, becomes

v∗ =
[2Q(t)

πφ2

(

1 − x2
1 + x2

2

φ2

)

]

e3, (21)
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where the volume flow rate is a function of time
t, given by

Q(t) =
π

2
φ2v3(z, t).

Instead of satisfying the momentum equation
(8)1 pointwisely in the fluid, we impose the fol-
lowing integral conditions

∫

S(z,t)

[

ti,i − ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)]

da = 0, (22)

∫

S(z,t)

[

ti,i − ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)]

xα1
. . . xαN

da = 0,

(23)
where N = 1, 2, 3.

Using the divergence theorem and integration
by parts, equations (22)− (23) for nine directors,
can be reduced to the four vector equations:

∂n

∂z
+ f = a, (24)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (25)

where n, kα1...αN , mα1...αN are resultant forces
defined by

n =

∫

S

t3da, kα =

∫

S

tαda, (26)

kαβ =

∫

S

(

tαxβ + tβxα

)

da, (27)

kαβγ =

∫

S

(

tαxβxγ + tβxαxγ + tγxαxβ

)

da, (28)

mα1...αN =

∫

S

t3xα1
. . . xαN

da. (29)

The quantities a and bα1...αN are inertia terms
defined by

a =

∫

S

ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)

da, (30)

bα1...αN =

∫

S

ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)

xα1
. . . xαN

da, (31)

and f , lα1...αN , which arise due to surface traction
on the lateral boundary, are defined by

f =

∫

∂S

twds, (32)

lα1...αN =

∫

∂S

twxα1
. . . xαN

ds. (33)

The equation relating the mean pressure gradient
(wall shear stress, respectively) with the volume
flow rate will be obtained using the above equa-
tions.

4 Results and discussion

Replacing the results (26)− (33) obtained by the
Cosserat theory, with nine directors, into equa-
tions (24) − (25), we get the following unsteady
relationship2

p̄z(z, t) = −4k
(

2
5n+1

2

)

Qn(t)

(n + 3)πnφ3n+1

− 4ρ

3πφ2

(

1 + 6
α1

ρφ2

)

Q̇(t), (34)

and the axial component τ1 of the stress tensor
on the lateral surface of the domain Ω is the wall
shear stress, given by

τ1 =
k
(

2
5n+1

2

)

Qn(t)

(n + 3)πnφ3n

+
ρ

6πφ2

(

1 + 24
α1

ρφ2

)

Q̇(t). (35)

Now, integrating equation (34), over a finite sec-
tion of the pipe, between z1 and z2 with z1 < z2,
we obtain the following equation.

G(t) =
p̄(z1, t) − p̄(z2, t)

z2 − z1
(36)

=
4k

(

2
5n+1

2

)

Qn(t)

(n + 3)πnφ3n+1
+

4ρ

3πφ2

(

1 + 6
α1

ρφ2

)

Q̇(t).

Solving equation (36), we can compute the volume
flow rate in terms of the mean pressure gradient,
G(t). Setting n = 1 in (36) we recover the solu-
tion for a Rivlin-Ericksen viscous fluid of second-
grade (see [4]), while setting n > 1 or n < 1
we obtain the results in the shear-thickening or
shear-thinning cases, respectively. Also, in (36) if
α1 = 0, we recover the results obtained by Cara-
pau and Sequeira [3]. In the next sections we have
fixed the parameters ρ = k = φ = α1 = 1 and
α2 ∈ R, i.e. the only free parameter is n. This
is enough to derive the qualitative behaviour of
the 1D reduced model. In the full 3D problem or
in curved geometries the normal stress moduli α1

and α2 would also have a significative impact.

Flow under constant pressure gradient

In the particular case of a constant mean pressure
gradient G(t) = G0 the system converges toward
a steady state solution. In Figure 3 this steady
state volume flow rate is obtained solving the time
dependent problem but, if we are not interested in

2Were the notation Q̇ is used for time differentiation.
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the behaviour during the initial transient phase,
the steady (asymptotic) value of the volume flow
rate can be obtained directly from (36) setting

Q̇(t) = 0, since at constant pressure gradient Q̇(t)
converges to zero as t goes to infinity. Therefore
the steady solution is characterized by

Q(t) =
φ3

4
√

2 n
√

4

n

√

G0(n + 3)φ

4k
, (37)

τ1 =
G0φ

4
, (38)

which is in excellent agreement with the numerical
results shown in Figure 3.
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Figure 3: Time evolution of the volume flow rate for
different values of n.

We see from these results that there is no
qualitative difference between the shear-thinning
and the shear-thickening cases, except from the
fact that the corresponding curves become more
dense as n increases.

Figure 4 shows how the volume flow rate
varies with the mean pressure gradient. For n = 1
there is a linear relation between these quantities,
but when a variable viscosity is introduced the re-
lation becomes non-linear. The growth of volume
flow rate is faster for the shear-thinning viscosity
(doted lines).
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Figure 4: Mean pressure gradient vs asymptotic volume
flow rate.

Time dependent mean pressure gradient

In the general situation of imposing a time de-
pendent mean pressure gradient, the theory still
holds, but additional conditions must be imposed
in order to get convenient solutions. We will only
briefly show results indicating some difficulties
that can occur in this case, leaving detailed analy-
sis for a future publication. In Figure 5 we can ob-
serve from the doted lines that if the power index
n is too low, one can obtain unphysical solutions.
The theory only holds for values of n above a cer-
tain threshold that depends on the lower bound
of G(t).
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Figure 5: Time evolution of volume flow rate for several
values of n with G(t) = 1 + cos(t).

5 Conclusions

A generalization of the constitutive equation for
second-grade fluids has been obtained by consid-
ering a shear-dependent viscosity function. Al-
though there is some controversly related to the
existence of real fluids of second-grade type, the
model has been successfully applied to particular
flow situations of polymeric liquids and, therefore,
the use of a variable viscosity is an important
contribution to the applicability of the second-
grade model to real flows. A nine-director theory
has been applied to the generalized second-grade
model in a straight, rigid and impermeable pipe
and some steady and unsteady relationships be-
tween mean pressure gradient (wall shear stress,
respectively) and volume flow rate were obtained.
Lacking reference solutions for this model, the
quality of the obtained relations is not easy to
assess. Nonetheless, analogy with similar applica-
tion of Cosserat theory (see [3]) seems to indicate
an error of about 1%. In the case of time depen-
dent mean pressure gradient, the theory may fail
for low values of the power index n if the mean
pressure gradient is too small.
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