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Abstract - Wavelet decomposition problems have been modeled as linear programs – but only as extremely dense 
problems.  Both revised simplex and interior point methods have difficulty with dense linear programs. The 
question then is how to get around that issue. In our experiments the standard method outperforms a revised 
implementation for these problems. Moreover, the standard method can be easily and scalably distributed. Hence 
the standard simplex method should be useful in solving wavelet decomposition problems. 
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1 Introduction 
Wavelet Decomposition has been modeled many ways. 
One method has focused on Linear Programs utilizing 
interior point methods [1]. Unfortunately the Linear 
Programs produced for Wavelet Decomposition models 
have extremely dense matrices and interior point 
methods have difficulty dealing with dense problems. 
Chen et al finessed this issue by restricting the wavelet 
decomposition problems to those with dictionaries 
having a special structure and by tailoring an 
implementation of an interior point method to take 
advantage of that special structure. 
 
To overcome these problems we propose utilizing the 
simplex method and in particular the standard simplex 
method to solve both these wavelet decomposition 
problems as well as other problems that produce dense 
matrices. There are two major variants of the simplex 
method, the revised method and the standard method. 
The revised method is commonly used due to its 
advantage for the majority of problems which are sparse. 
Nevertheless although dense problems are uncommon in 
general they do occur in a number of applications within 
Linear programming [2]. 
Another advantage of using the standard method is that 
it can be easily and effectively extended to parallel and 
coarse grained distributed algorithms. (There are no 
scalable distributed versions of the revised simplex 
method.) When the standard method is distributed, 

aspect ratio becomes less of an issue. We simply divide 
the extra columns among more processors. If done 
properly, parallelization of the standard method pays off 
even on small problems [6]. 
 
We have written a standard implementation of the 
simplex method (retroLP) and compared it to the 
commonly used revised method as implemented by the 
well-known MINOS optimization package [3].  In this 
paper we solve a number of wavelet decomposition 
problems utilizing both the revised and the standard 
simplex methods. We empirically show that although 
the revised method is superior for the average sparse 
problem, when we are solving these wavelet 
decomposition problems which are dense the standard 
method is actually better suited and should be used.  
 
 

2 The Revised and Standard Simplex 
Methods 

The following is the general form of a linear program:  
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A = {aij} is a given m x n matrix, x is an n-vector of 
decision variables xj , each with given lower bound lj and 
upper bound uj. The m-vectors bl and bu are given data 
that define constraints. The lower bound, lj, may take on 
the value -∞ and the upper bound, uj, may take on the 
value +∞.  Similarly, some or all of the components of bl 
may be -∞, and some or all of bu may be +∞. 
Table 1 summarizes the main qualitative differences 
between the standard and revised simplex method that 
affect wavelet decomposition linear programming 
problems.  
 
Revised Simplex Method Standard Simplex 

Method 
Takes better advantage of 
sparsity in problems 

Is more effective for 
dense problems 

Is more efficient for 
problems with large 
aspect ratio (n/m) 

Is more efficient for 
problems with low aspect 
ratio. 

Is difficult to perform 
efficiently in parallel, 
especially, in loosely 
coupled systems. 

Very easy to convert to a 
distributed version with a 
loosely coupled system. 

Table 1: Comparison of Revised and Standard 
Forms of the Simplex Method 

 
 

3 Previous Research 
3.1 Wavelet Decomposition 
 
Chen, Donoho and Saunders[1] have modeled Wavelet 
Decomposition as Linear Programs using a method 
called “Atomic Decomposition by Basis Pursuit.”  This 
method translates into large linear programs. For 
example, a typical wave signal of length 8192 results in 
an equivalent Linear Program of size 8192 by 212,992. 
Unfortunately the Linear Programs produced are not 
only extremely large but are dense. To quote the authors 
[1, p. 57] “However, the optimization problems we are 
interested in have a key difference from [other] 
successful large-scale applications…. The matrix A we 

deal with is not at all sparse; it is generally completely 
dense…”  
 
In order to deal with this the authors implemented a 
specialized interior point method to derive a unique 
wavelet dictionary from an over complete dictionary. 
Among other things they took advantage of fast implicit 
algorithms for representations in the dictionaries they 
considered. They used this to develop a substitute 
approach for efficiently solving the systems of equations 
and restricted the class of wavelet dictionaries used. 
 
 
 
3.2 Scalable Parallel Algorithms for the 

Standard Simplex Method 
 

Recently there has been much research on methods to 
parallelize the simplex method. The standard method has 
proven to be more amenable to distributed and parallel 
algorithms than the revised method. A number of 
parallel algorithms have been produced both for 
massively parallel machines and for distributed networks 
of workstations [5,2,4,6]. 
 
Dense applications, such as wavelet decomposition, for 
which the standard method yields lower iteration times, 
have particular potential for increased efficiency through 
the use of these parallel algorithms. We therefore 
propose that it is both possible and advantageous to use 
the general purpose standard method to solve these 
wavelet decomposition problems without having to be 
limited to wavelet dictionaries with fast representations. 

 
 

4 Experimental Results  
Table 2 lists seven wavelet decomposition problems 
with varying problem sizes. Data for these problems 
came from the Wavelet and Atomizer packages provided 
by Chen et al [1]. Note that these packages limited us in 
that they only produced wavelet dictionaries that are 
powers of 2 in width and height. In addition we did not 
have the ability to specify how dense the resulting 
problems should be. 
 
Columns two, three and four list the number of rows, 
number of columns and problem density respectively. 
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The fifth column shows the time per iteration it took 
MINOS, a well known revised simplex implementation, 
to solve these problems. Column six shows the time per 
iteration for retroLP, our implementation of the standard 
simplex method. We can see that as the densities listed 
in column four increase, retroLP becomes more and 
more efficient vis a vis MINOS. Problem 2 is the same 
size and aspect ratio as problems 5 through 7. The time 
per iteration for retroLP remains basically the same for 
all of them. MINOS, on the other hand, becomes 
between one hundred times and two hundred times 
slower when the problem has a density of 87.52% vs 
0.39%.  
 

Problem M N Density 
Minos 

time/iter 
retroLP 
time/iter 

1 1024 4096 0.20% 0.0002637 0.0950439 
2 512 2048 0.39% 0.0003320 0.0464786 
3 256 1536 33.85% 0.0055506 0.0163869 
4 128 3246 34.37% 0.0015652 0.0034923 
5 512 2048 87.52% 0.0532897 0.0452119 
6 512 2048 87.52% 0.0553762 0.0450486 
7 512 2048 87.52% 0.0527936 0.0451510 

 
Table 2: Comparison of retroLP and MINOS for 

Wavelet Decomposition 
 

5 Summary and Conclusions 
In this paper we discussed Wavelet Decomposition 
problems modeled as linear programs. We focused in 
particular on the model offered by Chen et al [1] and 
provided empirical data and experiments that compare 
the standard algorithm with the revised algorithm. Our 
experiments comparing MINOS and retroLP indicate 
that for moderate values of density the standard method 
is competitive, and that Wavelet Decomposition can take 
advantage of the standard method.  
 
An implementation of the standard method makes 
possible a natural Single Program Multiple Data 
(SPMD) approach for a distributed simplex method. 
Partition the columns among a number of workstations. 
Each iteration, each workstation prices out its columns, 
and makes a "bid" to all the workstations. The winning 
bid defines a pivot column, then all the workstations 
pivot on their columns in parallel, and so on. This is 
important for such problems as Wavelet Decomposition 
that are suited to the standard method.  
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