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Abstract: - In this paper we present the design of multiband linear subband prediction (LSP) filters for 
wideband signals.  A wideband signal is divided into narrowband subband signals via an array of 
lowpass/bandpass filters. A linear prediction filter is designed for each subband channel, which has its own 
designated frequency interval.  The filter coefficients are fixed throughout the coding process.  A closed form 
bound on the error of prediction shows that the LSP approach is accurate for wideband signals, which is further 
supported by simulations. 
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1   Introduction 
Linear prediction of wideband signals is a 
challenging   task. This is true no matter if it is 
viewed from the time domain or the frequency 
domain. In the time domain, a wide-band signal 
exhibits drastic changes within a short period of 
time. The frame size has to be downscaled to 
accommodate the random type behavior of the 
signal, which leads to a significant amount of 
increase in computation.  Meanwhile, because of 
the wide range of the spectrum, it requires higher 
order (all-pole) models for the spectral matching if 
prediction is done in the frequency domain. 
Traditionally, linear prediction is viewed as an 
autocorrelation-domain analysis, which can be 
approached from either the time or the frequency 
domain [3]. The most common linear prediction 
filters are all-pole models built on an 
autocorrelation method usually associated with 
windowing, a covariance method, or their variant 
[1], [4], [5], [8]. A common feature of those 
methods is that the filter coefficients are obtained 
from solving the autocorrelation normal equations, 
known as the Yule-Walker equations. Those 
equations are constructed with the autocorrelation 
function values from the samples of a signal. 
Therefore, the filter coefficients depend on signal 
samples.  They have to be recalculated whenever 
the window shifts to a new position. Mugler and 
Wu proposed linear prediction models for lowpass 
and bandpass signals in [6], [7]. The filter 
coefficients are independent of the samples of the 

input signal. Those linear prediction models are 
used here in the design of the so-called linear 
subband prediction (LSP) filters. 
    We adopt the idea of subband coding [2] 
commonly used in digital speech coding in the 
design of LSP filters. However, there is no down-
sampling or up-sampling in the LSP filtering. The 
LSP filter design follows an analysis-to-synthesis 
structure.  A wideband signal is first divided into 
subband signals via an array of lowpass/bandpass 
filters. Then, a linear prediction filter is designed 
for each subband signal, see Fig. 1. The filter 
coefficients only depend on the frequency interval 
of the corresponding subband. The final 
synthesized prediction is obtained as a sum of the 
subband predictions.  Detailed structure of LSP 
filters is discussed in section 2.  The motivation of 
this work is due to the fact that the accuracy of 
linear prediction of lowpass and bandpass signals 
improves as the bandwidth of the signal decreases 
[6], [7]. A closed form bound on the error of 
prediction is presented in section 3 followed by 
numerical results given in section 4. The small 
upper bound indicates that the LSP method is 
accurate for bandlimited signals.  It is particularly 
effective and accurate for the extrapolation of 
wideband signals. 
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Fig.1. Structure of linear subband prediction filter de

 
2   Derivation of LSP Filters 
    In this section, we construct a series of 
subband prediction filters by first utilizing an a
filter banks to divide a bandlimited signa
lowpass and bandpass signals with n
bandwidths. The frequency range for the bas
i.e. , and each successive passband are d
for example, the i

],0[ 0f

th subband is restricted to
We then derive a predictive formula for each su
prediction filter. The prediction coefficients
depend on the time-bandwidth product of the ch
and are independent of the signal in terms 
magnitude. They are fixed throughout the proc
prediction. A schematic diagram for the 
subband prediction filter design is illustrated in 
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We assume that the signal is uniformly sampled with 
sampling interval T. Meanwhile, the vectors in (5) 
and (6), and , consist of the 
predictive filter coefficients for the baseband signal 

 and the i

)0(b nib ,...,2,1 ,(i) =

)0(x th passband signal respectively. The 
order of the i

)(ix
th subband predictive filter is given 

by .  It is chosen based on the scale of the time-
bandwidth product [6], [7], i.e. for baseband and 

 for passband, of the corresponding 
subband channel. Generally speaking, the order of a 
subband predictive filter is less than ten if the time-
bandwidth product of the subband is less than 0.5. 
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    The coefficients for the predictive filters 
are derived from minimizing the net error of 
prediction, i.e.  
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By using the triangle inequality, the problem of 
minimizing the error of predictionε  can be 
decoupled into a series of minimization problems 
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This allows us to incorporate narrow subbands into 
the minimization process. It turns out in the 
frequency domain that the error minimization is 
transformed into minimizing the Fourier integral of 
each subband filter over its entire bandwidth.  By 
applying the well-known Cauchy-Schwarz inequality 
to ,,...,1,0 ,ˆ )()( nmxx mm =− one obtains 
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represents the energy of the subband signals.  
Meanwhile, 

                  (8) ∑
=

− ==
iN

k

kfTji
k

i niebfTd
1

2)()( .,...,1,0 ,)( π

The filter coefficients, , are obtained from )(i
kb



minimizing the error integrals i0  and εε  from (7) 
respectively, which is a standard least-squares 
problem.  The filter coefficients for the 
baseband, , satisfy the following Toeplitz system: )0(
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center frequency of the ith passband. 
    The symmetric Toeplitz systems (9) and (10) are 
ill-conditioned for small time-bandwidth product TW 
of the subband, where T is the sampling interval and 
W is the bandwidth of the subband. Therefore, we use 
Levinson-Durbin's recursive approach, which is well 
known for solving ill-conditioned Toeplitz matrix 
equations, to solve the -dimensional Toeplitz 
systems (9) and (10). Once the filter coefficients are 
obtained from (9) and (10), they are incorporated 
back into (4), where the future value of a subband 
signal is predicted from each subband channel, and 
then the final synthesized prediction, , is obtained 
by adding all the predicted values together, see Fig. 1. 

iN

)(ˆ tx

   An important feature of the subband predictive 
formula (4) is readily seen from the derivation that 
the filter coefficients only depend on the sampling 
interval and the frequency bounds for each subband, 

and they are independent of the sample values of the 
specific signal . Therefore, the same prediction 
formula (4) is applicable to two different signals as 
long as they share the same frequency interval even if 
the spectra over the frequency interval could be 
dramatically different between the two signals. 
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3   Performance Analysis 
   The magnitude for the error of prediction of the LSP 
method is not readily seen from (7) since there is no 
closed form expression for the minimized error 
integrals in (7). Nonetheless, the prediction 
coefficients, , should yield the least 
upper bound on the error of prediction, 

nib i ,...,1,0 ,)( =
ε , under the 

Cauchy-Schwarz inequality. In order to perceive the 
size of the error, which would further shed light on the 
accuracy of the proposed predictive method, we derive 
an upper bound on the error, which has a closed form 
expression. 
   The error integrals, nii ,...,1,0 , =ε , in (7) can be 
written into a quadratic form as follows 
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Without loss of generality, we assume that  is 

positive.  The eigenvector can be scaled with  
so that eqn. (13) can be written as 
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where iλ  is the smallest eigenvalue of the augmented 
matrix )(iA  in (12).  Hence, the size of the error 
integral iε largely depends on the magnitude of the 
smallest eigenvalue iλ .  Finally, a closed form for the 
upper bound of the error of prediction is given by 
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where 0λ  is the smallest eigenvalue of the augmented 
matrix (12) obtained from )0(H  given by (9) 
and nii ,...,2,1 , =λ , is the smallest eigenvalue of the 
augmented matrix (12) obtained from )(iH given by 
(10). It is important to identify that the augmented 
matrix (12) is a symmetric Toeplitz matrix and it is 
positive definite [10]. 
   As noted earlier, the Toeplitz matrices such as the 
ones in (9), (10), and (12) are ill-conditioned.  Recall 
that a matrix is ill-conditioned if its condition number 
is large.  Since our Toeplitz matrices are symmetric 
(and positive definite), its condition number has the 
following expression 
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)(iA respectively.  Therefore, a large condition 
number of )(iA implies a small value of .  This is 

true because  cannot be too large due to the fact 
that is less than the trace of

)(
min
iλ
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iλ )(iA , which 

equals . Numerical calculation of the eigenvalues 

of 

1+iN
)(iA  further confirms that the eigenvalue is 

small if the bandwidth parameter is small, see Fig. 2a.  
As a result, the upper bound on the error of prediction 
(16) is small as long as the bandwidth for each 
subband is small, which implies high accuracy of 
prediction. 
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   It is generally true that the more samples (more 
redundancy of information) used in a predictive 
formula the better accuracy of the prediction. It is 
certainly true for the LSP filters. The number of 
samples used in a subband predictive formula, (5) and 
(6) ( -tap prediction), is related to the dimension of 
the matrix (12) in such a way that, if the number of 
samples is , the dimension of the augmented matrix 
(12) is . It is shown in Fig. 2b that the 

smallest eigenvalue of the matrix monotonically 
decreases and approach zero as the dimension of the 
matrix increases, which, from (16), implies higher 
accuracy of prediction with more samples. 

iN

iN
)1()1( +×+ ii NN

   The above analysis leads to two different approaches 
for implementing the subband predictive method to 
achieve the same accuracy of prediction. The first 
approach is to use less filter banks but more samples 
from each subband to carry out the prediction (use 
high-order LSP filters); the second one is to use more 
filter banks, which allows us to adopt less samples 
from each subband (use low-order LSP filters).  

 
(a)

 
(b) 

Fig.2. Smallest eigenvalue of the augmented matrix 
(12) vs. (a) the bandwidth parameter (b) dimension of 

the matrix 
 
4   Numerical Simulation 
    To demonstrate the performance of the LSP filters, 
we apply these filters as well as linear predictive 
method-based (LPM) filters to a set of speech data.  
The LPM filters are well-known predictive filters in 
digital signal processing [9]. The LPM filter 
coefficients are signal-dependent in such a way that 
they are recalculated and updated on-line whenever a 
new frame of samples is fed through the prediction 
filter [9]. In contrast, the design of LSP filters is done 
offline, the filter coefficients are fixed throughout the 
process of prediction.  Therefore, the LSP filter design 
is much more efficient than that of LPM-based filter 
design. 
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   The speech signal in our numerical test is sampled at 
8 kHz, and it is already bandlimited to 3.4 kHz. For 
the examples presented in this paper, we used DFT-
based ideal lowpass/bandpass filters to divide the 
speech signal into subband signals.  Once the cutoff 
frequencies are set for each subband, they are used to 
compute the LSP filter coefficients via (9) and (10) for 
the corresponding subband channel and the filter 
coefficients stay invariant during the process of 
prediction. Meanwhile, the LPM filters are also set up 
for the comparison. The coefficients of the LPM filters 
are recalculated and updated once every 80 samples. 
   In the first case study, we test the filters over a four-
band and a six-band setting respectively. The results 
are summarized in Table 1. The results shown are 
point-wise relative error from each step of prediction. 
The simulation runs over 3000 samples, which are  
within the voiced segment of the speech data. The first 
two columns of Table 1 list the largest error and the 
smallest error out of the 3000 predictions respectively. 
We also record the number of predictions, of which 
the error satisfies the specified criterion (less than 

). This result is shown in the third column.  The 
upper bound for the error of prediction for LSP is 
computed from (16), which is listed in the fourth 
column of Table 1. The numerical bound would 
indicate the accuracy of prediction for the LSP filters. 

310−

The results listed in Table 1(a) are obtained based on 
the setting that the signal is first lowpassed/bandpassed 
to four subbands with 0.8 kHz, 0.9 kHz, 0.9 kHz, and 
0.8 kHz as the bandwidths of the respective subband 
signals. The LSP filters include an eight-tap prediction 
filter for the baseband channel and a twelve-tap 
prediction filter for each passband channel.  On the 
other hand, we give some leeway to the LPM filters by 
allowing a twelve-tap prediction filter for each 
subband channel. We then use a six-band setting, 
Table 1(b), with the following designated bandwidths: 
0.406 kHz, 0.406 kHz, 0.497 kHz, 0.701 kHz, 0.698 
kHz, and 0.692 kHz, to compare the performance 
between the two prediction filters. Under these 
settings, the LSP filters consist of a six-tap baseband 
prediction filter and a fifteen-tap prediction filter for 
each passband, while the LPM filters consists of a 
twenty-tap prediction filter for each subband.  The 
reason we use a lower order LSP filter for the 
baseband channel is that the bandwidth (0.8 kHz in (a) 
and 0.406 kHz in (b)) is so small that the time-
bandwidth product is only 0.2 in (a) and 0.1015 in (b). 
Therefore, to maintain the accuracy of prediction, it is 
sufficient to adopt a smaller number of samples to 
carry out the prediction. The results show that the LSP 

filter out-performs the LPM filter in all the measurable 
categories. For the last category, the LPM method 
does not have a uniform bound on error to compare 
with that of the LSP method. We did many other 
experiments with different segments of the speech data 
and different settings. The results showed that LSP 
filter design is consistently better than the LPM design 
in terms of accuracy. 

 
Table 1. Comparison of accuracy between LSP and 
LPM filters: (a) a four-band setting (b) a six-band 

setting 
 

 max error min error # of errors<1e-3 upper 
bound 

 
LSP 

 
8.7116e - 2 

 
5.0901e - 7 

 
2612 (out of 3000) 

 
0.9305 

 
LPM 

 
4.2659e+2 

 
1.1380e - 4 

 
186 (out of 3000) 

 
N/A 

(a) 
 

 max error min error # of errors<1e-3 upper  
bound  

 
      LSP 

 
6.3625e - 3 

 
7.3275e - 9 

 
2941 (out of 3000) 

 
0.1107 

 
     LPM 

 
1.1315e+2 

 
5.7605e - 6 

 
417 (out of 3000) 

 
N/A 

(b) 
 
     
5   Conclusion 
 
   The LSP filter design has an analysis-to-synthesis 
structure. The filter coefficients are determined by 
minimizing a series of spectral-domain error integrals, 
and they are fixed throughout the process of prediction. 
This special feature is in contrast to most prediction 
filters, in which the filter coefficients have to be 
recalculated periodically. We present a closed form 
upper bound on the error of prediction. The small upper 
bound implies highly accurate predictions, which is also 
verified by numerical experiments.  
   Future work includes the performance evaluation of 
LSP filters against noise (robustness) and aliasing 
effect, application of this method in speech processing, 
such as pitch detection and data compression. 
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