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Abstract: - This paper presents a multi-class scheduling algorithm for real-time transactions that combine scheduling 
and concurrency control. It is integrated to MOA, a multi-class overload architecture.  The architecture consists of a 
real-time control layer which provides sophisticated admission control, scheduling and overload management. The 
proposed algorithm, DBP_CC, allows service differentiation and takes into account resource availability when 
extracting a transaction. There is no need to execute a concurrency control algorithm afterwards. Simulation results 
show that DBP_CC can achieve a significant performance even in overload situations. 
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1 Motivation  
Many current soft real-time applications and systems 
such as e-commerce applications, stock trading, internet 
bids, media servers, manipulate extensive amount of data 
under time constraints. Such applications need 
RTDBMS (Real-Time Database Management Systems) 
with time-cognizant protocols for concurrency control, 
commit processing, transaction scheduling, I/O, etc. 
 Often, real-time database applications need service 
differentiation. In real-time environments where 
transactions are ordered for execution based on their 
deadline, it can be useful to provide the application 
developer a way to correctly point out, how much it is 
critical to the system that some transactions meet their 
deadline. Recently, we observed a tendency towards 
RTDBMS that allow developers to specify the 
importance of transactions using a time attribute (by 
specifying a deadline) and using other attributes like a 
priority or an importance. Such RTDBMS need service 
differentiation oriented scheduling protocols.  
 To address this need, RTDBMS should support 
multi-class models and have specific scheduling 
algorithms. In [4], we have introduced a novel real-time 
transaction control layer called MOA (multi-class 
overload architecture), in the database system 
architecture. MOA consists of a set of modules which 
act together in order to guarantee predictability, overload 
resolution and service differentiation. 
 Within MOA, we propose an adaptation of DBP [7] 
(a multi-class scheduling algorithm used to serve streams 
in networks) to real-time transactions and we combine it 
with a concurrency control algorithm 2PL (two phase 

locking) [9]. The rest of this paper is organized as 
follows. The related work in real-time transaction 
scheduling is presented in next section. The MOA 
architecture and the main modules are described in 
Section 3. Section 4 presents the proposed scheduling 
algorithm. Performance evaluation results are presented 
in Section 5. Section 6 concludes this paper. 
 
 
2 Related work 
Transactions have been classified by Ramamritham in 
[14] as hard, firm and soft transactions. Real-time 
database transactions are usually in either firm deadline 
or soft deadline class. In this paper, we restrict our 
attention to real-time database systems that execute firm 
deadline transactions. A firm transaction that misses its 
deadline adds no value to the system. Thus it is 
discarded as soon as its deadline is missed.  
 Many efforts have been made in the design of real-
time concurrency and commit protocols (used to 
guarantee the isolation and atomicity properties). Real-
time concurrency control protocols may be optimistic or 
pessimistic. Optimistic protocols such as SCC [5], [6], 
Wait-50 [8] detect conflicts at transaction commit time 
and resolve those using rollbacks, while pessimistic 
protocols such as 2PL-HP (a real-time adaptation of 
2PL) [9], avoid conflicts by applying resource blocking.   
Scheduling policies such as EDF [12], EDF-CR [1], [2] 
are optimal to schedule transactions but within a single 
queue. EDF performance decrease seriously in overload 
situations [1].  
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 Recently, kang and al. have introduced the feedback 
control scheduling architecture which consists of 
admission control, performance measures and a quality 
of service controller. The target performance is achieved 
by dynamically adapting the system behavior based on 
the current performance error measured by the monitor 
[10]. Although their model is a multi-class one, the 
scheduling algorithm executes all transactions of high 
importance before passing to another queue. 
 When the server is overloaded, it is impossible for 
any schedule to meet every deadline. That’s why the 
(m,k)-firm model was proposed by Hamdaoui [7]. The 
guarantee (m,k)-firm specifies the level of the temporal 
guarantee offered to real time applications tolerating the 
loss of some processes of tasks or some messages. The 
principle of the (m,k)-firm model is to guarantee that m 
tasks respect their deadlines among k consecutive tasks. 
In a multi-class model, each class may have its own 
(mi,ki) parameters. (m,k)-firm scheduling has an impact 
on the reduction of the system overload as it doesn't try 
to guarantee the respect of the deadlines of the totality of 
tasks but only of a proportion of them. 
 Suitable approaches to real-time systems that can 
tolerate occasional deadlines miss, fall into two 
categories: static and dynamic. In the static algorithms, 
the priority is determined off line while using a 
stationary parameter, for example the ratio of success 
m/k (examples of algorithms are (m,k)-WFQ [11], 
Enhanced Fixed Priority[15]). 
 Koubâa and Song present in [11] an algorithm which 
consists in integrating the temporal constraints (m,k)-
firm to the process of scheduling of WFQ. The source 
marks m critical packets among all k consecutive 
packets and the rests being optional. The scheduler 
stamps the packet by its outgoing virtual time then the 
server selects the packet having the smallest outgoing 
virtual time among all present critical packets at the head 
of their queues. If no critical packet exists, the choice is 
made among the optional packets. 
 Another approach is the introduction by Ramanathan 
in [15] of the EFP, Enhanced fixed priority algorithm. 
The basic idea of this algorithm is to classify the 
instances of a task as either mandatory or optional. The 
mandatory instances are assigned a higher priority than 
optional instances. The classification of instances as 
mandatory or optional is based on the values mi  and ki. 
 The static algorithms can't be applied to transactions 
scheduling because they don't allow the calculus of the 
priority during the execution. In contrast with packets, 
transactions can have resources conflicts; therefore we 
need a concurrency control (CC) scheme to solve these 
conflicts during execution. 
 The resolution of the CC scheme is dependent on the 
availability of the resources needed by the transaction to 

extract. Often the priority needs to be adjusted to take 
this last in consideration.  
 With the dynamic algorithms, the priority is 
determined according to the state of the system. Most 
famous algorithms are DBP (Distance Based Priority) 
[7], Matrix-DBP [13] and DWCS (Dynamic Window-
Constrained Scheduling) [16]. 
 The DBP algorithm is one of the famous dynamic 
algorithms applied to the (m,k) firm model. In [7], it was 
applied to periodic and aperiodic streams organized in 
multiple queues with different (m,k) requirements. DBP 
uses the history of the execution called k-sequence, to 
determine the queue which is going to miss its (m,k) 
requirements. The k-sequence is a sequence of k bits (1 
indicates the respect of deadline and 0 the opposite). It is 
updated after the stream is served. The selected queue is 
considered of high priority and the stream at the head of 
the queue is extracted and served. 
 In [13], Poggi and al. introduce the Matrix-DBP 
algorithm which is an enhancement of DBP for periodic 
streams. In [16], West and al. present the DWCS, 
Dynamic Window-Constrained Scheduling which 
attempts to guarantee that no more than x out of y 
deadlines are missed for consecutive packets in real-time 
multimedia streams. 
 All these approaches are dedicated to the Network 
domain. Usually packets have the same length whereas 
transactions have individual execution times. Moreover, 
often packets don't have a deadline. Among dynamic 
algorithms, DBP is the one that seems interesting to 
adapt; indeed it is dynamic and accepts both periodic and 
aperiodic streams. 
 
 
3 MOA: the Multi-class Overload 
Architecture 
MOA is a real-time layer with suitable real-time 
protocols which allow:  

 The concurrent execution of multi-class 
transactions,  

 The support of various dispatching algorithms 
adapted to the multi-class transaction model, 

 Reduced miss deadline, function of transaction 
classes, 

 Overload situations detection and resolution. 
 Its main components are a transaction controller and 
a transaction scheduler. The transaction controller (TC) 
controls the transaction admission and resolves overload 
situations.  
 The transaction scheduler (TS) provides scheduling 
and dispatching algorithms which are specially designed 
for the multi-class transaction model. Our research 
addresses additional aspects in relation to the multi-class 
nature of the transactions (high, medium and low 
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importance) requiring more sophisticated admission 
control and rejection algorithms. Figure 1 presents the 
proposed architecture.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The MOA Architecture 
 

3.1 Transaction model 
A transaction τi is characterized by the following 
attributes: 
ri  – the ready time, when the transaction arrives to the 
system.  
di – the deadline, it indicates the requirement to complete 
the transaction before the instant di. 
wei – the worst case execution time. The execution time 
of a transaction is data dependent.  
rei – the remaining execution time. A transaction is 
executed during a quantum; rei represents the remaining 
execution time. 
sti – the slack time of τi. It represents the maximum 
amount of time the transaction can be delayed and still 
satisfy its deadline. di, sti and ri are related by : sti = di - 
ri.-wei. Initially the slack time is computed using wei. 
This attribute is dynamic and at time t,  sti = di - t  - rei. 
Transactions can be periodic or aperiodic. Periodic 
transactions are those which need to update data 
frequently. Let pi be the invocation period. Usually 
pi=di. Aperiodic transactions are those whose arrival to 
the system is unknown.  
impi – importance of τi. The importance of a transaction 
τi indicates how much it is critical to the system that the 
transaction meets its deadline. We adopt three levels of 
importance: high, medium and low. The importance 
attribute is given by the application developer.  
 A high importance (Hi) means that the transaction is 
very important. A medium importance (Mi) means that 
the transaction should satisfy its deadline but there will 
be no problem if it is missed. A low importance (Li) is 
the default importance and means that a deadline miss 
for this transaction is not so important. The Li queue 
may also contain non-real-time transactions. We assume 
that some deadlines miss are inevitable due to 
unpredictable workloads. 

 In a multi-class environment, a politic that makes the 
differentiation of service must be capable to define a 
strategy to choose the queue of which will be made the 
extraction. Under pretext that the HI queue is the most 
important one, the algorithm shouldn’t execute all 
transactions of this queue before passing to another one, 
but should achieve a specific minimum level of service 
for the queues. 
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3.2 MOA modules 
3.2.1 The transaction controller  
The transaction controller consists of an admission 
controller and a resolver. The admission controller 
receives submitted transactions and executes an 
admission test. The test is based on the current system 
state and the transaction attributes and is successful if the 
new transaction can meet its deadline without any risk 
that the previously accepted transactions miss their 
deadline. Accepted transactions are transmitted to the 
scheduler. Both the admission controller and the resolver 
are designed as components and implemented by 
aspects. An aspect can be seen like a non-functional 
aspect of a RTDBMS and can be disabled without 
disturbing the system functionality. Indeed, some 
scheduling algorithms apply an admission test but others 
don't. The DBP_CC algorithm doesn't apply a test upon 
the transaction arrival. 
 
3.2.2 The transaction scheduler 
The transaction scheduler consists of inserting and 
dispatching algorithms. Transactions accepted by the 
admission controller are sent to the inserting module. 
This module inserts them in the associated queues 
according to their priorities. Inserting algorithms are the 
most famous dynamic real-time scheduling algorithms: 
EDF and LLF [12]. EDF sorts queues by an increasing 
value of the deadlines.  
 The scheduler supports many dispatching algorithms: 
some of them are single class algorithms such as EDF, 
LLF.  
 The MOA architecture supports both single and 
multiple queue models. In that case, we apply 
sophisticated dispatching algorithms which consider 
additional aspects in relation with the multi-class 
transaction model. 
 The first one, H/M/L has been introduced in [3]. It is 
a parametrable priority based scheduling algorithm, 
which extracts H percent of the number of high 
importance transactions, M percent of the number of 
medium importance transactions and L percent of the 
low importance transactions that are ready (i.e. their 
ready time is reached). A threshold is defined for the 
execution of low importance transactions. 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)



 In this paper we present a novel scheduling algorithm 
DBP_CC, adapted to the multi-class model, which apply 
service differentiation and concurrency control before 
extracting a transaction. DBP_CC offers quality of 
service by allowing the programmer to specify different 
success ratios for the queues.  
 
3.2.3 The transaction manager 
The transaction manager can be compared to a 
conventional database engine. Transactions extracted by 
the dispatching algorithm are inserted in a queue called 
TM_queue which is used by the transaction manager to 
execute transactions.  
 The transaction manager can execute many 
transactions in parallel. We define C as the system 
capacity to execute transactions in parallel. For each 
transaction extracted from TM_queue, the resource set is 
checked and once all the required resources obtained, the 
transaction is executed during the necessary quanta. 
When a transaction resumes execution, if C is not 
reached, the transaction manager extracts the transaction 
at the head of the TM_queue and so on.  
 The concurrency control algorithm applied by the 
transaction manager is 2PL-HP (Two phase locking high 
priority) which is free from "priority inversion".  
 
3.2.4 Additional modules: The queue handler, the 
logger and the performance monitor 
MOA uses three additional modules. The queue handler 
provides the basic infrastructure for the queues handling 
and the maintenance of information on the queues.    
 The logger represents the journalizing module of the 
real-time database system. It receives the most relevant 
information to preserve from the various modules and it 
registers them in a log.   
 The performance monitor measures the state of the 
system in terms of deadlines miss and utilization ratios. 
Examples of useful statistics are system utilization, 
arrival rates and miss ratios. 
 
 
4 The proposed algorithm 
This section presents the DBP_CC algorithm. We first 
present the application model and then describe the 
algorithm.  
  
 
4.1 Application model  
In a RTDBMS, we distinguish mainly two types of 
transactions: update transactions and user transactions.  
Update Transactions regularly update the data gathered 
near sensors. These transactions are carried out 
periodically to refresh the value of the real time data. 
User transactions carry out operations of read/write on 
non real-time data and read operations on real time data.   

 Within the MOA architecture, we have chosen to 
organize the transactions by the following way:   

 The queue Hi will contain the update transactions 
since these are the more critical in the system.  

 The queue Mi will contain the user transactions 
judged important.  

 The Li queue will contain the user transactions 
judged of less importance. 

 Let's recall that user transactions are marked of 
medium or low importance by the application developer. 
In addition, he has to specify the values of the 
parameters (m,k). More m is close to k more the queue 
has priority. The ratio m/k of the Hi queue must be 
distinctly superior to the one of the Mi queue in order to 
give more priority to the update transactions. For the 
present model, since the high queue contains periodic 
update transactions, m is equal to k.  
 The queue handler supports both single and multiple 
queue models. Presently, the multiple queue model 
consists of 3 queues but one can add as much queues as 
he wants. Therefore, the administrator can specify n 
queues for user transactions, each one having its own  
(mi,ki) requirements. 
 
 
4.2 Building the k-sequence with DBP 
The basic idea of DBP is very simple:  more a queue is 
close to the dynamic failure, more it has priority. A 
queue is in dynamic failure if there are less than m 
transactions that respect their deadlines among the k last 
transactions.  
 It supposes that we save information concerning the 
respect of deadlines in a structure named k-sequence. 
The k-sequence of a stream represents the history of 
execution of the k last transactions. It is a sequence of k 
bits (1 indicates the respect of deadline and 0 the 
opposite).  
 In figure 2, the system is in dynamic failure until 2 
transactions among 3 consecutive are executed. After the 
execution of the first transaction, the k-sequence is 001, 
if the next transaction is executed with success the k-
sequence will be 011 and if it is missed the k-sequence 
will be 010. In case of success, the system leaves the 
dynamic failure state. 
  
 
 
 
 
 
 
 
 

 
Fig. 2  Example of k-sequence 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)



 Given the k-sequence of a set of transactions, the 
distance that separates the present state to a dynamic 
failure state is equal to the number of' 0' that it will be 
necessary to add to the k-sequence so that it is in 
dynamic failure. With DBP, if ever two transactions 
have the same distance, it is the EDF policy that is 
applied. The priority (distance) is computed by DBP in 
the following way: 
 

(1)      1),(_Pr +−= smlkDBPiority  
 
 Where l(m,s) is the position leaving from the right of 
the mth success (1) and s the state of the queue. In our 
model, each queue has its own (mi,ki) constraints and its 
own k-sequence. Each queue having the weakest priority 
is the closest one to dynamic failure (0 being the top 
priority:  dynamic failure). The k-sequence is updated 
after the complete execution of the transaction. 
 
 
4.3 DBP_CC outline  
All (m,k) firm algorithms presented in the section 2 are 
specific to scheduling within networks. The model to 
which they are applied consists of periodic and/or 
aperiodic streams with packets of same length. When 
adapting DBP to schedule transactions, the resolution of 
the concurrency control scheme, often interfere with 
transactions scheduling. The significant contribution of 
this work is the adaptation of DBP to DBP_CC, which 
combines both scheduling and conflict detection and 
resolution so that the transaction manager doesn't need to 
execute a concurrency control algorithm such as 2PL-
HP. 
 For each queue of the model, DBP_CC updates its k-
sequence. A transaction is extracted if the transaction 
manager hasn't reached its maximal capacity C. Using 
the k-sequences, DBP_CC computes the priority of each 
queue and determines Queuepriority the closest one to a 
dynamic failure state.  Before extracting the transaction 
at the head, a conflict detection test is executed. This test 
scans a resource table which indicates for each resource 
locked, the mode (shared or exclusive) and the 
transaction holding the lock (figure 3). A conflict occurs 
when at least one resource needed by the requester 
transaction is locked. 
 If the transaction at the head has a conflict with one 
transaction that has already began its execution, we are 
tugged between (1) pass to the following transaction in 
the same queue and (2) change queue. Indeed, the 
transaction at the head in another queue may have no 
conflicts with the transactions in TM_queue. Our 
primary goal is to avoid a dynamic failure state so if the 
transaction at the head can't be executed, the algorithm 
passes to the next transaction in the same queue. 
 

 
 
 
 
 
 
 
 
 

DBP_CC
1 1 11 11

0 1 1

1 1 11 1

( 20, 20 )

( 8 , 20 )

(2 , 20) 

TM_Queue

1

1

……

1

0

H5

 
 
 

Fig. 3 Execution of DBP_CC 
 
4.3.1 Guarantying transaction serializability 
The isolation property (part of the ACID properties) is 
seriously compromised when there are concurrent 
transactions. Transactions are serializable when the 
effect on the database is the same whether the 
transactions are executed in serial order or in an 
interleaved schedule. The two phase locking algorithm is 
the common mechanism applied by commercial 
databases to guaranty transaction serializability. 2PL 
applies a lock acquisition phase followed by a lock 
release phase. The DBP_CC algorithm enforces 
serializability because it respects the principle of the two 
phases, hence once the release phase starts, the 
transaction can't acquire new locks.  
 
4.3.2 Priority inversion 
Priority inversion occurs when a transaction of high 
importance has to wait that a lower importance 
transaction releases locks put on resources needed by the 
high importance transaction.  
 DBP_CC is free from priority inversion. Each time a 
resource conflict is detected, before considering another 
transaction, DBP_CC compares the importance of the 
requester and holder transactions. The following table is 
used by DBP_CC to make decision.  
 

Requester (transaction to extract from 
Queuepriority) 

 

Hi Mi Li 
Hi nothing nothing nothing 
Mi Restart Holder nothing nothing Holder 

 
Li Restart holder Restart holder nothing 

 
Table 1 Conflict resolution strategies 

 
 Table 1 shows that the algorithm interrupts a 
transaction holding locks only if the requester 
transaction has higher importance. The algorithm 
browses TM_queue and requisitions resources to less 
importance transactions. We settle the problem of 
priority inversion, but by aborting transactions of lower 
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importance (the k-sequence is updated with value 0) and 
we risk the dynamic failure for the other queues. 
 
4.3.3 Guarantying the requirements of update 
transactions   
Update transactions have the higher importance in our 
model and have to meet their deadline. A way to achieve 
this goal is to execute all transactions of Hi_queue 
before passing to another one. The DBP_CC algorithm 
applies (m,k) firm scheduling and it may happen that a 
Mi or Li transaction increases the response time of a Hi 
transaction. To achieve the success requirements of 
update transactions, when the closest queue to dynamic 
failure state, queuepriority is the Mi_queue or the 
Li_queue, the algorithm checks if the slack time of the 
head transaction in the Hi_queue is sufficient to execute 
the selected transaction and the transactions in 
TM_queue.  
 Let τextract be the transaction at the head of the 
queuepriority andτH the transaction at the head of Hi queue.   
If  τextract ≠τH, τextract is extracted only if  

(2)  TM_queue    
1

∈∀+> ∑ i

C

iextractH rewest τ  

 
5 Performance evaluation 
We have simulated a main memory database, this way 
transaction execution involves only cpu and no I/O and 
we can estimate the execution time. The decreasing main 
memory cost, allows very large databases to remain in 
memory and main memory databases are suitable to real-
time applications. 
 The design of MOA architecture has been carried out 
with UML 2.0 and the unified process 2TUP. We have 
developed a java simulator named RTDS, based on this 
architecture. The present version is 1.01.  
 
 
5.1 Simulation model 
In our simulation, we execute transactions workloads 
consisting of update transactions and user transactions. 
 Update transactions constitute a periodic workload of 
40% of processor time. User transactions follow an 
arrival rate (poisson distribution) that vary from 1 to 50 
transactions per second in increments of 10, which 
represents a medium to heavy loaded system. The 
execution time and the deadline of a transaction follow a 
uniform distribution. The deadline is calculated by this 
formula: di = ri + wei* (1 + sfi). The slack time (sfi*wei) 
represents the time during which the transaction can be 
delayed without missing its deadline. The slack factor is 
uniformly distributed between 3 and 5. The estimated 
execution time of an update transaction and a user 
transaction is uniformly distributed in a range (30ms, 
70ms) and in a range (30ms, 150 ms) respectively. For 

all the experiments, the system enters an overload state 
when the number of transactions reaches 20 (processor 
utilization exceeds 1) 
 The number of resources in the database is 100. Each 
transaction needs a set of resources uniformly distributed 
in a range (1, 3). The resource set of a user transaction 
follow a Bernoulli distribution with a write probability 
of 25 percent. The following table summarizes the 
parameters and their baseline values. 
 

Parameters Baseline values 
Number of resources (which 
represents the database size) 

100 

CPU time for update transactions 30 to 70 ms 
CPU time for user transactions 30 to 150 ms 
Slack factor for update transactions 3 to 5 
Slack factor for user transactions 3 to 5 
Mean transaction arrival rate per 
second 

1 to 50 Transactions Per 
Second 

Processor utilization for periodic 
transactions 

40 % 

Probability of write operation for 
user transactions 

0.25 

 
Table 2 System parameters 
 

5.2 Experiment 1 : comparison between DBP 
and DBP_CC 
The first experiment compares the performance of DBP 
and DBP_CC. DBP calculates the priority of each queue 
and extracts the transaction at the head of the queue with 
the lowest priority. DBP_CC performs a conflict 
detection test before extracting the transaction. In case of 
conflict, it applies resolution strategies or extracts the 
following transaction. We define GMR (global miss 
ratio) as the total number of transactions that miss their 
deadline compared to the total number of transactions.  
    

)3(
ons transactiof#total
ons transactimissed of#  =GMR 

 
 For the first step of this experiment, (mH,kH) is 
(20,20), (mM,kM) is (8,20) and (mL,KL) is (2,20) which 
represents requirements of 100% success for update 
transactions, 40 % for medium importance transactions 
and 10% for Low importance transactions. As can be 
observed in figure 4, the performance of DBP_CC is 
better than DBP. Indeed DBP_CC executes two tests 
before extracting a transaction: one to detect a possible 
resource conflict and one to check if there is enough 
time to guarantee that the transaction of high importance 
at the head meets its deadline.  
 The difference between the GMR is not very 
significant because this is an average ratio.  It is 
necessary to examine the per-class miss ratios in order to 
highlight the superiority of  DBP_CC. 
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Fig. 4 GMR for DBP and DBP_CC 

 
5.3 Experiment 2 : Per-class Miss ratio  
As can be observed in figure 4, for an average number of 
transactions per second that varies between 20 and 50 
GMR is high. In this experiment, we measure the per-
class miss ratios for DBP and DBP_CC. We define 
MR_Hi as: 
 

 
 
  
Mr_Mi et MR_Low are calculated according to the same 
principle. On figure 5 which describes the per-class miss 
ratios of DBP, we observe for an  average of 20 
transactions per second, that Mr_Hi, MR_Mi and MR_Li 
are respectively 16%, 64% and 68%;  What gives us 
success rates respectively of 84 %, 36 % and 32 %. 
When the system is overloaded, with a number of 40 
transactions per second, the success rates of the various 
queues are respectively 56%, 27% and 10%.  We notice 
that DBP deviates from the specified rates of 100%, 40% 
and 10% especially for transactions of high importance. 
     

Per class Miss ratios

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50

Transactions per second

M
R

 (%
)

MR_Hi
MR_Mi
MR_Li

 
Fig. 5 Per-class miss ratios for DBP 

 
 According to figure 6, DBP_CC provides for an 
average of 20 transactions per second, miss ratios for the 
queues Hi, Mi and Li which are respectively 2%, 53% 
and 68%. Success rates are 98%, 47% and 32 %. For an 
average of 40 transactions per second, these success 
rates varies little and are respectively 98%, 44% and 

14%.  We notice that DBP_CC has success rates which 
are close to the values (m,k) specified for each queue.   
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Fig. 6 Per-class miss ratio for DBP_CC 

with requirements of 100%, 40% and 
10%. 

 
 Figure 7 shows the per-class miss ratios with 
requirements of 100%, 70% and 10% (the Mi queue has 
(mM,kM) set to (14, 20)).  The algorithm extracts more 
Mi transactions, consequently the miss ratios of high 
importance transactions is slightly degraded. That results 
in data updated with a little delay but no serious 
consequences since the environment is a soft real-time 
system that tolerates some deadlines miss.   
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Fig. 7 Per-class miss ratio for DBP_CC 

with requirements of 100%, 70% and 
10%. 

 
 
6 Conclusion 
When scheduling transactions in a real-time database 
management system, the concurrency control resolution 
often interfere with the decisions taken by the scheduler, 
what makes transactions guaranteed by the scheduling 
algorithm miss their deadline. Usually RTDBMS apply a 
concurrency control algorithm and schedule transactions 
with an increasing value of their deadline. In a multi-
class model where transactions have different success 
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requirements, a suitable scheduling algorithm is 
necessary.  
 In this paper we have considered DBP, a scheduling 
algorithm for (m,k) firm streams and we have adapted it 
to execute transactions and resolve resource conflicts. 
The proposed DBP_CC algorithm allows service 
differentiation and is free of priority inversion. We have 
simulated and compared the algorithms. Results show 
that DBP_CC always outperforms DBP and respects the 
specified (m,k). 
 Other simulation experiments are being conducted to 
study the relation between the (m,k) of the different 
queues. Based on the (m,k) firm requirements of the Hi 
queue, the system will be able to certify if the others 
(m,k) firm constraints can be met or if they need to be 
changed. An analytic study of the proposed algorithm 
based on the response time is also being done. Our goal 
is to reject transactions upon their arrival if the system 
can't guarantee their deadline. In that case, the admission 
controller which is implemented as an aspect in the 
MOA architecture will be associated to the execution of 
the DBP_CC algorithm.  
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