
Combining scheduling and concurrency control of Real-
time transactions within the MOA Architecture

LEILA BACCOUCHE, SAMI LIMAM

RIADI laboratory
INSAT, National Institute of Applied Science and Technology

C.U. Nord, B.P 676, Tunis Cedex 1080
 TUNISIA

Abstract: - This paper presents a multi-class scheduling algorithm for real-time transactions that combine scheduling
and concurrency control. It is integrated to MOA, a multi-class overload architecture. The architecture consists of a
real-time control layer which provides sophisticated admission control, scheduling and overload management. The
proposed algorithm, DBP_CC, allows service differentiation and takes into account resource availability when
extracting a transaction. There is no need to execute a concurrency control algorithm afterwards. Simulation results
show that DBP_CC can achieve a significant performance even in overload situations.

Key words: - Real-time database systems, Service differentiation, Transaction scheduling, Concurrency control.

1 Motivation
Many current soft real-time applications and systems
such as e-commerce applications, stock trading, internet
bids, media servers, manipulate extensive amount of data
under time constraints. Such applications need
RTDBMS (Real-Time Database Management Systems)
with time-cognizant protocols for concurrency control,
commit processing, transaction scheduling, I/O, etc.
 Often, real-time database applications need service
differentiation. In real-time environments where
transactions are ordered for execution based on their
deadline, it can be useful to provide the application
developer a way to correctly point out, how much it is
critical to the system that some transactions meet their
deadline. Recently, we observed a tendency towards
RTDBMS that allow developers to specify the
importance of transactions using a time attribute (by
specifying a deadline) and using other attributes like a
priority or an importance. Such RTDBMS need service
differentiation oriented scheduling protocols.
 To address this need, RTDBMS should support
multi-class models and have specific scheduling
algorithms. In [4], we have introduced a novel real-time
transaction control layer called MOA (multi-class
overload architecture), in the database system
architecture. MOA consists of a set of modules which
act together in order to guarantee predictability, overload
resolution and service differentiation.
 Within MOA, we propose an adaptation of DBP [7]
(a multi-class scheduling algorithm used to serve streams
in networks) to real-time transactions and we combine it
with a concurrency control algorithm 2PL (two phase

locking) [9]. The rest of this paper is organized as
follows. The related work in real-time transaction
scheduling is presented in next section. The MOA
architecture and the main modules are described in
Section 3. Section 4 presents the proposed scheduling
algorithm. Performance evaluation results are presented
in Section 5. Section 6 concludes this paper.

2 Related work
Transactions have been classified by Ramamritham in
[14] as hard, firm and soft transactions. Real-time
database transactions are usually in either firm deadline
or soft deadline class. In this paper, we restrict our
attention to real-time database systems that execute firm
deadline transactions. A firm transaction that misses its
deadline adds no value to the system. Thus it is
discarded as soon as its deadline is missed.
 Many efforts have been made in the design of real-
time concurrency and commit protocols (used to
guarantee the isolation and atomicity properties). Real-
time concurrency control protocols may be optimistic or
pessimistic. Optimistic protocols such as SCC [5], [6],
Wait-50 [8] detect conflicts at transaction commit time
and resolve those using rollbacks, while pessimistic
protocols such as 2PL-HP (a real-time adaptation of
2PL) [9], avoid conflicts by applying resource blocking.
Scheduling policies such as EDF [12], EDF-CR [1], [2]
are optimal to schedule transactions but within a single
queue. EDF performance decrease seriously in overload
situations [1].

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

mailto:leila.baccouche@insat.rnu.tn
mailto:limamsami@yahoo.fr

 Recently, kang and al. have introduced the feedback
control scheduling architecture which consists of
admission control, performance measures and a quality
of service controller. The target performance is achieved
by dynamically adapting the system behavior based on
the current performance error measured by the monitor
[10]. Although their model is a multi-class one, the
scheduling algorithm executes all transactions of high
importance before passing to another queue.
 When the server is overloaded, it is impossible for
any schedule to meet every deadline. That’s why the
(m,k)-firm model was proposed by Hamdaoui [7]. The
guarantee (m,k)-firm specifies the level of the temporal
guarantee offered to real time applications tolerating the
loss of some processes of tasks or some messages. The
principle of the (m,k)-firm model is to guarantee that m
tasks respect their deadlines among k consecutive tasks.
In a multi-class model, each class may have its own
(mi,ki) parameters. (m,k)-firm scheduling has an impact
on the reduction of the system overload as it doesn't try
to guarantee the respect of the deadlines of the totality of
tasks but only of a proportion of them.
 Suitable approaches to real-time systems that can
tolerate occasional deadlines miss, fall into two
categories: static and dynamic. In the static algorithms,
the priority is determined off line while using a
stationary parameter, for example the ratio of success
m/k (examples of algorithms are (m,k)-WFQ [11],
Enhanced Fixed Priority[15]).
 Koubâa and Song present in [11] an algorithm which
consists in integrating the temporal constraints (m,k)-
firm to the process of scheduling of WFQ. The source
marks m critical packets among all k consecutive
packets and the rests being optional. The scheduler
stamps the packet by its outgoing virtual time then the
server selects the packet having the smallest outgoing
virtual time among all present critical packets at the head
of their queues. If no critical packet exists, the choice is
made among the optional packets.
 Another approach is the introduction by Ramanathan
in [15] of the EFP, Enhanced fixed priority algorithm.
The basic idea of this algorithm is to classify the
instances of a task as either mandatory or optional. The
mandatory instances are assigned a higher priority than
optional instances. The classification of instances as
mandatory or optional is based on the values mi and ki.
 The static algorithms can't be applied to transactions
scheduling because they don't allow the calculus of the
priority during the execution. In contrast with packets,
transactions can have resources conflicts; therefore we
need a concurrency control (CC) scheme to solve these
conflicts during execution.
 The resolution of the CC scheme is dependent on the
availability of the resources needed by the transaction to

extract. Often the priority needs to be adjusted to take
this last in consideration.
 With the dynamic algorithms, the priority is
determined according to the state of the system. Most
famous algorithms are DBP (Distance Based Priority)
[7], Matrix-DBP [13] and DWCS (Dynamic Window-
Constrained Scheduling) [16].
 The DBP algorithm is one of the famous dynamic
algorithms applied to the (m,k) firm model. In [7], it was
applied to periodic and aperiodic streams organized in
multiple queues with different (m,k) requirements. DBP
uses the history of the execution called k-sequence, to
determine the queue which is going to miss its (m,k)
requirements. The k-sequence is a sequence of k bits (1
indicates the respect of deadline and 0 the opposite). It is
updated after the stream is served. The selected queue is
considered of high priority and the stream at the head of
the queue is extracted and served.
 In [13], Poggi and al. introduce the Matrix-DBP
algorithm which is an enhancement of DBP for periodic
streams. In [16], West and al. present the DWCS,
Dynamic Window-Constrained Scheduling which
attempts to guarantee that no more than x out of y
deadlines are missed for consecutive packets in real-time
multimedia streams.
 All these approaches are dedicated to the Network
domain. Usually packets have the same length whereas
transactions have individual execution times. Moreover,
often packets don't have a deadline. Among dynamic
algorithms, DBP is the one that seems interesting to
adapt; indeed it is dynamic and accepts both periodic and
aperiodic streams.

3 MOA: the Multi-class Overload
Architecture
MOA is a real-time layer with suitable real-time
protocols which allow:

 The concurrent execution of multi-class
transactions,

 The support of various dispatching algorithms
adapted to the multi-class transaction model,

 Reduced miss deadline, function of transaction
classes,

 Overload situations detection and resolution.
 Its main components are a transaction controller and
a transaction scheduler. The transaction controller (TC)
controls the transaction admission and resolves overload
situations.
 The transaction scheduler (TS) provides scheduling
and dispatching algorithms which are specially designed
for the multi-class transaction model. Our research
addresses additional aspects in relation to the multi-class
nature of the transactions (high, medium and low

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

importance) requiring more sophisticated admission
control and rejection algorithms. Figure 1 presents the
proposed architecture.

Fig. 1 The MOA Architecture

3.1 Transaction model
A transaction τi is characterized by the following
attributes:
ri – the ready time, when the transaction arrives to the
system.
di – the deadline, it indicates the requirement to complete
the transaction before the instant di.
wei – the worst case execution time. The execution time
of a transaction is data dependent.
rei – the remaining execution time. A transaction is
executed during a quantum; rei represents the remaining
execution time.
sti – the slack time of τi. It represents the maximum
amount of time the transaction can be delayed and still
satisfy its deadline. di, sti and ri are related by : sti = di -
ri.-wei. Initially the slack time is computed using wei.
This attribute is dynamic and at time t, sti = di - t - rei.
Transactions can be periodic or aperiodic. Periodic
transactions are those which need to update data
frequently. Let pi be the invocation period. Usually
pi=di. Aperiodic transactions are those whose arrival to
the system is unknown.
impi – importance of τi. The importance of a transaction
τi indicates how much it is critical to the system that the
transaction meets its deadline. We adopt three levels of
importance: high, medium and low. The importance
attribute is given by the application developer.
 A high importance (Hi) means that the transaction is
very important. A medium importance (Mi) means that
the transaction should satisfy its deadline but there will
be no problem if it is missed. A low importance (Li) is
the default importance and means that a deadline miss
for this transaction is not so important. The Li queue
may also contain non-real-time transactions. We assume
that some deadlines miss are inevitable due to
unpredictable workloads.

 In a multi-class environment, a politic that makes the
differentiation of service must be capable to define a
strategy to choose the queue of which will be made the
extraction. Under pretext that the HI queue is the most
important one, the algorithm shouldn’t execute all
transactions of this queue before passing to another one,
but should achieve a specific minimum level of service
for the queues.

Admission
controller

CC
2PL-HP

Overload
situation

Overload
resolver

Execution

Database

Transaction scheduler

Transaction manager

Database
Log

User
Transactions

Transaction controller

Accepted
transactions

Dispatching
algorithms :
EDF, H/M/L

Inserting
algorithms :

EDF, LLF

LI_queue

HI_queue

MI_queue

Insert ExtractInformation

Queue handler

Update
transactions

Performance Monitor

Other transactions
are cancelled

Real-time control layer

Logger

3.2 MOA modules
3.2.1 The transaction controller
The transaction controller consists of an admission
controller and a resolver. The admission controller
receives submitted transactions and executes an
admission test. The test is based on the current system
state and the transaction attributes and is successful if the
new transaction can meet its deadline without any risk
that the previously accepted transactions miss their
deadline. Accepted transactions are transmitted to the
scheduler. Both the admission controller and the resolver
are designed as components and implemented by
aspects. An aspect can be seen like a non-functional
aspect of a RTDBMS and can be disabled without
disturbing the system functionality. Indeed, some
scheduling algorithms apply an admission test but others
don't. The DBP_CC algorithm doesn't apply a test upon
the transaction arrival.

3.2.2 The transaction scheduler
The transaction scheduler consists of inserting and
dispatching algorithms. Transactions accepted by the
admission controller are sent to the inserting module.
This module inserts them in the associated queues
according to their priorities. Inserting algorithms are the
most famous dynamic real-time scheduling algorithms:
EDF and LLF [12]. EDF sorts queues by an increasing
value of the deadlines.
 The scheduler supports many dispatching algorithms:
some of them are single class algorithms such as EDF,
LLF.
 The MOA architecture supports both single and
multiple queue models. In that case, we apply
sophisticated dispatching algorithms which consider
additional aspects in relation with the multi-class
transaction model.
 The first one, H/M/L has been introduced in [3]. It is
a parametrable priority based scheduling algorithm,
which extracts H percent of the number of high
importance transactions, M percent of the number of
medium importance transactions and L percent of the
low importance transactions that are ready (i.e. their
ready time is reached). A threshold is defined for the
execution of low importance transactions.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

 In this paper we present a novel scheduling algorithm
DBP_CC, adapted to the multi-class model, which apply
service differentiation and concurrency control before
extracting a transaction. DBP_CC offers quality of
service by allowing the programmer to specify different
success ratios for the queues.

3.2.3 The transaction manager
The transaction manager can be compared to a
conventional database engine. Transactions extracted by
the dispatching algorithm are inserted in a queue called
TM_queue which is used by the transaction manager to
execute transactions.
 The transaction manager can execute many
transactions in parallel. We define C as the system
capacity to execute transactions in parallel. For each
transaction extracted from TM_queue, the resource set is
checked and once all the required resources obtained, the
transaction is executed during the necessary quanta.
When a transaction resumes execution, if C is not
reached, the transaction manager extracts the transaction
at the head of the TM_queue and so on.
 The concurrency control algorithm applied by the
transaction manager is 2PL-HP (Two phase locking high
priority) which is free from "priority inversion".

3.2.4 Additional modules: The queue handler, the
logger and the performance monitor
MOA uses three additional modules. The queue handler
provides the basic infrastructure for the queues handling
and the maintenance of information on the queues.
 The logger represents the journalizing module of the
real-time database system. It receives the most relevant
information to preserve from the various modules and it
registers them in a log.
 The performance monitor measures the state of the
system in terms of deadlines miss and utilization ratios.
Examples of useful statistics are system utilization,
arrival rates and miss ratios.

4 The proposed algorithm
This section presents the DBP_CC algorithm. We first
present the application model and then describe the
algorithm.

4.1 Application model
In a RTDBMS, we distinguish mainly two types of
transactions: update transactions and user transactions.
Update Transactions regularly update the data gathered
near sensors. These transactions are carried out
periodically to refresh the value of the real time data.
User transactions carry out operations of read/write on
non real-time data and read operations on real time data.

 Within the MOA architecture, we have chosen to
organize the transactions by the following way:

 The queue Hi will contain the update transactions
since these are the more critical in the system.

 The queue Mi will contain the user transactions
judged important.

 The Li queue will contain the user transactions
judged of less importance.

 Let's recall that user transactions are marked of
medium or low importance by the application developer.
In addition, he has to specify the values of the
parameters (m,k). More m is close to k more the queue
has priority. The ratio m/k of the Hi queue must be
distinctly superior to the one of the Mi queue in order to
give more priority to the update transactions. For the
present model, since the high queue contains periodic
update transactions, m is equal to k.
 The queue handler supports both single and multiple
queue models. Presently, the multiple queue model
consists of 3 queues but one can add as much queues as
he wants. Therefore, the administrator can specify n
queues for user transactions, each one having its own
(mi,ki) requirements.

4.2 Building the k-sequence with DBP
The basic idea of DBP is very simple: more a queue is
close to the dynamic failure, more it has priority. A
queue is in dynamic failure if there are less than m
transactions that respect their deadlines among the k last
transactions.
 It supposes that we save information concerning the
respect of deadlines in a structure named k-sequence.
The k-sequence of a stream represents the history of
execution of the k last transactions. It is a sequence of k
bits (1 indicates the respect of deadline and 0 the
opposite).
 In figure 2, the system is in dynamic failure until 2
transactions among 3 consecutive are executed. After the
execution of the first transaction, the k-sequence is 001,
if the next transaction is executed with success the k-
sequence will be 011 and if it is missed the k-sequence
will be 010. In case of success, the system leaves the
dynamic failure state.

Fig. 2 Example of k-sequence

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

 Given the k-sequence of a set of transactions, the
distance that separates the present state to a dynamic
failure state is equal to the number of' 0' that it will be
necessary to add to the k-sequence so that it is in
dynamic failure. With DBP, if ever two transactions
have the same distance, it is the EDF policy that is
applied. The priority (distance) is computed by DBP in
the following way:

(1) 1),(_Pr +−= smlkDBPiority

 Where l(m,s) is the position leaving from the right of
the mth success (1) and s the state of the queue. In our
model, each queue has its own (mi,ki) constraints and its
own k-sequence. Each queue having the weakest priority
is the closest one to dynamic failure (0 being the top
priority: dynamic failure). The k-sequence is updated
after the complete execution of the transaction.

4.3 DBP_CC outline
All (m,k) firm algorithms presented in the section 2 are
specific to scheduling within networks. The model to
which they are applied consists of periodic and/or
aperiodic streams with packets of same length. When
adapting DBP to schedule transactions, the resolution of
the concurrency control scheme, often interfere with
transactions scheduling. The significant contribution of
this work is the adaptation of DBP to DBP_CC, which
combines both scheduling and conflict detection and
resolution so that the transaction manager doesn't need to
execute a concurrency control algorithm such as 2PL-
HP.
 For each queue of the model, DBP_CC updates its k-
sequence. A transaction is extracted if the transaction
manager hasn't reached its maximal capacity C. Using
the k-sequences, DBP_CC computes the priority of each
queue and determines Queuepriority the closest one to a
dynamic failure state. Before extracting the transaction
at the head, a conflict detection test is executed. This test
scans a resource table which indicates for each resource
locked, the mode (shared or exclusive) and the
transaction holding the lock (figure 3). A conflict occurs
when at least one resource needed by the requester
transaction is locked.
 If the transaction at the head has a conflict with one
transaction that has already began its execution, we are
tugged between (1) pass to the following transaction in
the same queue and (2) change queue. Indeed, the
transaction at the head in another queue may have no
conflicts with the transactions in TM_queue. Our
primary goal is to avoid a dynamic failure state so if the
transaction at the head can't be executed, the algorithm
passes to the next transaction in the same queue.

DBP_CC
1 1 11 11

0 1 1

1 1 11 1

(20, 20)

(8 , 20)

(2 , 20)

TM_Queue

1

1

……

1

0

H5

Fig. 3 Execution of DBP_CC

4.3.1 Guarantying transaction serializability
The isolation property (part of the ACID properties) is
seriously compromised when there are concurrent
transactions. Transactions are serializable when the
effect on the database is the same whether the
transactions are executed in serial order or in an
interleaved schedule. The two phase locking algorithm is
the common mechanism applied by commercial
databases to guaranty transaction serializability. 2PL
applies a lock acquisition phase followed by a lock
release phase. The DBP_CC algorithm enforces
serializability because it respects the principle of the two
phases, hence once the release phase starts, the
transaction can't acquire new locks.

4.3.2 Priority inversion
Priority inversion occurs when a transaction of high
importance has to wait that a lower importance
transaction releases locks put on resources needed by the
high importance transaction.
 DBP_CC is free from priority inversion. Each time a
resource conflict is detected, before considering another
transaction, DBP_CC compares the importance of the
requester and holder transactions. The following table is
used by DBP_CC to make decision.

Requester (transaction to extract from
Queuepriority)

Hi Mi Li
Hi nothing nothing nothing
Mi Restart Holder nothing nothing Holder

Li Restart holder Restart holder nothing

Table 1 Conflict resolution strategies

 Table 1 shows that the algorithm interrupts a
transaction holding locks only if the requester
transaction has higher importance. The algorithm
browses TM_queue and requisitions resources to less
importance transactions. We settle the problem of
priority inversion, but by aborting transactions of lower

H4H6

……

H7H8

M3M4M5M6 M2

Test of CC
Locking Table
Resource

Locker

Locking mode

The queue H is the closest to dynamic failure

L7L8L9L10 L6

H3H2L5 M1

000……

DBP_CC
1 1 11 11

0 1 1

1 1 11 1

(20, 20)

(8 , 20)

(2 , 20)

TM_Queue

1

1

……

1

0

H5 H4H6

……

H7H8

M3M4M5M6 M2

Test of CC
Locking Table
Resource

Locker

Locking mode

The queue H is the closest to dynamic failure

L7L8L9L10 L6

H3H2L5 M1

000……

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

importance (the k-sequence is updated with value 0) and
we risk the dynamic failure for the other queues.

4.3.3 Guarantying the requirements of update
transactions
Update transactions have the higher importance in our
model and have to meet their deadline. A way to achieve
this goal is to execute all transactions of Hi_queue
before passing to another one. The DBP_CC algorithm
applies (m,k) firm scheduling and it may happen that a
Mi or Li transaction increases the response time of a Hi
transaction. To achieve the success requirements of
update transactions, when the closest queue to dynamic
failure state, queuepriority is the Mi_queue or the
Li_queue, the algorithm checks if the slack time of the
head transaction in the Hi_queue is sufficient to execute
the selected transaction and the transactions in
TM_queue.
 Let τextract be the transaction at the head of the
queuepriority andτH the transaction at the head of Hi queue.
If τextract ≠τH, τextract is extracted only if

(2) TM_queue
1

∈∀+> ∑ i

C

iextractH rewest τ

5 Performance evaluation
We have simulated a main memory database, this way
transaction execution involves only cpu and no I/O and
we can estimate the execution time. The decreasing main
memory cost, allows very large databases to remain in
memory and main memory databases are suitable to real-
time applications.
 The design of MOA architecture has been carried out
with UML 2.0 and the unified process 2TUP. We have
developed a java simulator named RTDS, based on this
architecture. The present version is 1.01.

5.1 Simulation model
In our simulation, we execute transactions workloads
consisting of update transactions and user transactions.
 Update transactions constitute a periodic workload of
40% of processor time. User transactions follow an
arrival rate (poisson distribution) that vary from 1 to 50
transactions per second in increments of 10, which
represents a medium to heavy loaded system. The
execution time and the deadline of a transaction follow a
uniform distribution. The deadline is calculated by this
formula: di = ri + wei* (1 + sfi). The slack time (sfi*wei)
represents the time during which the transaction can be
delayed without missing its deadline. The slack factor is
uniformly distributed between 3 and 5. The estimated
execution time of an update transaction and a user
transaction is uniformly distributed in a range (30ms,
70ms) and in a range (30ms, 150 ms) respectively. For

all the experiments, the system enters an overload state
when the number of transactions reaches 20 (processor
utilization exceeds 1)
 The number of resources in the database is 100. Each
transaction needs a set of resources uniformly distributed
in a range (1, 3). The resource set of a user transaction
follow a Bernoulli distribution with a write probability
of 25 percent. The following table summarizes the
parameters and their baseline values.

Parameters Baseline values
Number of resources (which
represents the database size)

100

CPU time for update transactions 30 to 70 ms
CPU time for user transactions 30 to 150 ms
Slack factor for update transactions 3 to 5
Slack factor for user transactions 3 to 5
Mean transaction arrival rate per
second

1 to 50 Transactions Per
Second

Processor utilization for periodic
transactions

40 %

Probability of write operation for
user transactions

0.25

Table 2 System parameters

5.2 Experiment 1 : comparison between DBP
and DBP_CC
The first experiment compares the performance of DBP
and DBP_CC. DBP calculates the priority of each queue
and extracts the transaction at the head of the queue with
the lowest priority. DBP_CC performs a conflict
detection test before extracting the transaction. In case of
conflict, it applies resolution strategies or extracts the
following transaction. We define GMR (global miss
ratio) as the total number of transactions that miss their
deadline compared to the total number of transactions.

)3(
ons transactiof#total
ons transactimissed of# =GMR

 For the first step of this experiment, (mH,kH) is
(20,20), (mM,kM) is (8,20) and (mL,KL) is (2,20) which
represents requirements of 100% success for update
transactions, 40 % for medium importance transactions
and 10% for Low importance transactions. As can be
observed in figure 4, the performance of DBP_CC is
better than DBP. Indeed DBP_CC executes two tests
before extracting a transaction: one to detect a possible
resource conflict and one to check if there is enough
time to guarantee that the transaction of high importance
at the head meets its deadline.
 The difference between the GMR is not very
significant because this is an average ratio. It is
necessary to examine the per-class miss ratios in order to
highlight the superiority of DBP_CC.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

Global Miss Ratio

0

20

40

60

80

100

1 10 20 30 40 50

Transactions per second

M
R

 (%
)

MR DBP

MR DBP_CC

Fig. 4 GMR for DBP and DBP_CC

5.3 Experiment 2 : Per-class Miss ratio
As can be observed in figure 4, for an average number of
transactions per second that varies between 20 and 50
GMR is high. In this experiment, we measure the per-
class miss ratios for DBP and DBP_CC. We define
MR_Hi as:

Mr_Mi et MR_Low are calculated according to the same
principle. On figure 5 which describes the per-class miss
ratios of DBP, we observe for an average of 20
transactions per second, that Mr_Hi, MR_Mi and MR_Li
are respectively 16%, 64% and 68%; What gives us
success rates respectively of 84 %, 36 % and 32 %.
When the system is overloaded, with a number of 40
transactions per second, the success rates of the various
queues are respectively 56%, 27% and 10%. We notice
that DBP deviates from the specified rates of 100%, 40%
and 10% especially for transactions of high importance.

Per class Miss ratios

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50

Transactions per second

M
R

 (%
)

MR_Hi
MR_Mi
MR_Li

Fig. 5 Per-class miss ratios for DBP

 According to figure 6, DBP_CC provides for an
average of 20 transactions per second, miss ratios for the
queues Hi, Mi and Li which are respectively 2%, 53%
and 68%. Success rates are 98%, 47% and 32 %. For an
average of 40 transactions per second, these success
rates varies little and are respectively 98%, 44% and

14%. We notice that DBP_CC has success rates which
are close to the values (m,k) specified for each queue.

Per-class Miss ratios of DBP_CC

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50

Transactions per second

M
R

 (%
)

MR_Hi
MR_Mi
MR_Li

Fig. 6 Per-class miss ratio for DBP_CC

with requirements of 100%, 40% and
10%.

 Figure 7 shows the per-class miss ratios with
requirements of 100%, 70% and 10% (the Mi queue has
(mM,kM) set to (14, 20)). The algorithm extracts more
Mi transactions, consequently the miss ratios of high
importance transactions is slightly degraded. That results
in data updated with a little delay but no serious
consequences since the environment is a soft real-time
system that tolerates some deadlines miss.

)4(
ons transactiHi of # total

 ons transactiHifor deadlines missed of# _ =Hi

Per-class Miss ratios of DBP_CC

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50

Transactions per second

M
R

 (%
)

MR_Hi
MR_Mi
MR_Li

Fig. 7 Per-class miss ratio for DBP_CC

with requirements of 100%, 70% and
10%.

6 Conclusion
When scheduling transactions in a real-time database
management system, the concurrency control resolution
often interfere with the decisions taken by the scheduler,
what makes transactions guaranteed by the scheduling
algorithm miss their deadline. Usually RTDBMS apply a
concurrency control algorithm and schedule transactions
with an increasing value of their deadline. In a multi-
class model where transactions have different success

MR

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

requirements, a suitable scheduling algorithm is
necessary.
 In this paper we have considered DBP, a scheduling
algorithm for (m,k) firm streams and we have adapted it
to execute transactions and resolve resource conflicts.
The proposed DBP_CC algorithm allows service
differentiation and is free of priority inversion. We have
simulated and compared the algorithms. Results show
that DBP_CC always outperforms DBP and respects the
specified (m,k).
 Other simulation experiments are being conducted to
study the relation between the (m,k) of the different
queues. Based on the (m,k) firm requirements of the Hi
queue, the system will be able to certify if the others
(m,k) firm constraints can be met or if they need to be
changed. An analytic study of the proposed algorithm
based on the response time is also being done. Our goal
is to reject transactions upon their arrival if the system
can't guarantee their deadline. In that case, the admission
controller which is implemented as an aspect in the
MOA architecture will be associated to the execution of
the DBP_CC algorithm.

References:
[1] R. Abbot, and H. Garcia-Molina, "Scheduling

Real-Time Transactions: A Performance
Evaluation", In Proceedings of the 14th
International Conference on Very Large Database
Systems, Los Angeles, California, USA, Aug.
1988.

[2] R. Abbot, and H. Garcia-Molina, "Scheduling
Real-Time Transactions with Disk Resident Data",
In Proceedings of the 15th International
Conference on Very Large Database systems,
pages 385–396, Amsterdam, The Netherlands.
Aug. 1989.

[3] L. Baccouche, "Scheduling multi-class real-time
transactions: a performance evaluation", In
Proceedings of the 5th International conference on
databases and datamining DBDM 2005, pages
249-252, turkey, June 2005.

[4] L. Baccouche, “An overview of MOA, a multi-
class overload architecture for real-time database
systems: framework and algorithms”, In
Proceedings of the ACS/IEEE International
Conference on Computer Systems and
Applications (AICCSA-06), March 2006,
Dubai/Sharjah, UAE.

[5] A. Bestavros, and S. Braoudakis, "Timeliness via
speculation for real-time databases", In

Proceedings 14th IEEE RTS Symposium
(RTSS’96), San Juan, Puerto Rico, 1996.

[6] S. Braoudakis, "Concurrency control protocols for
real-time databases", PhD dissertation, Computer
Science Department, Boston University, USA,
1995.

[7] M. Hamdaoui and P. Ramanathan, “A dynamic
priority assignment technique for streams with
(m,k)-firm deadlines,” IEEE Transactions on
Computers, April1995.

[8] J.R Haritsa, M. J. Carey, and M. Livny,
"Dynamic Real-Time Optimistic Concurrency
Control", In Proceedings of the Real-Time Systems
Symposium, pages 94-103, Lake Buena vista,
Florida, USA, Dec. 1990.

[9] J.R Haritsa, M. J. Carey, and M. Livny, "Data
access scheduling in firm real-time database
systems", In Journal of RTS, vol.4, n° 3, pages
203-241, 1992.

[10] K.-D. Kang, S. Son, and J. Stankovic, "Service
Differentiation in Real-Time Main Memory
Databases", In 5th IEEE International Symposium
on Object-Oriented Real-Time Distributed
Computing (IEEE ISORC’02), Washington D.C.

[11] A. Koubaa Y-Q. SONG, J-P THOMESSE, "
Integrating (m,k)-Firm Real-Time Guarantees in
the Internet QoS Model", LNCS 4th IFIP
Networking Conference Networking '2004, Athens
(Greece) 9-14 May 2004

[12] C. L. Liu, and J. Layland, "Scheduling algorithms
for multiprogramming in hard real-time
environments", In Journal of the ACM, 20(1):
pages 46-61, Jan. 1973.

[13] E.-M. Poggi, Y.-Q. Song, A. Koubaa, Z. Wang,
“Matrix-DBP For (m, k)-firm Real-Time
Guarantee”, In Proceedings of Real Time Systems
Conference RTS'2003, pages 457-482, Paris
(France), 1-3 April 2003.

[14] K. Ramamritham, "Real-time databases",
Distributed and Parallel Databases (Invited
Paper), vol. n°(2), pages 199–226, April 1993.

[15] P. Ramanathan, “Overload management in Real-
Time control applications using (m, k)-firm
guarantee”. IEEE Transactions on Parallel and
Distributed Systems, 10(6) pages 549–559, Jun
1999.

[16] R. West, Y. Zhang, K. Schwan, and C.
Poellabauer, “Dynamic window-constrained
scheduling of real-time streams in media servers,”
IEEE Transactions on Computers, vol. 53, pp.
744–759, June 2004.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1097-1104)

