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Abstract: - In this paper a question of using artificial intelligence principles and an incomplete solution approach were 
explored for solving NP hard problems in the real-time systems using the maximum clique finding problem as an 
example. The incomplete solution is used to analyze different best known algorithms in the real-time environment, 
while artificial intelligence principles were implemented in a form of a meta-algorithm containing other problem 
specific algorithms. Experiments conducted in this paper have demonstrated that the meta-algorithm in a randomly 
generated graphs environment required up to 3 times less time to find a solution in a certain range of graphs than the 
best known general type algorithm, and was never slower in other ranges. 
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1   Introduction 
There are a lot of problems that are not so easy to solve 
as it looks like at first. A polynomial time algorithm is an 
algorithm whose time complexity function is O(p(n)), 
where p(n) is a polynomial function. Any algorithm 
whose time complexity function cannot be so bounded is 
an exponential time algorithm. The first most important 
researches in the algorithms complexity area were done 
by Turing in the 1940s. Turing has demonstrated that 
some problems are “undecidable”, i.e. those problems 
can be solved algorithmically. Moreover his works have 
greatly affected complexity theory for “decidable” 
problems since his abstract computer model, so called 
Turing machine, was used for researches and definitions 
in this area. NP-class problems are defined as problems 
that can be solved on a none-deterministic Turing 
machine in a polynomial time [8]. There is a P class as 
well, which contains problems that can be solved in a 
polynomial time on the deterministic Turing machine, 
which is also called just the Turing machine. Sometimes 
NP-class is defined as a class of problems that cannot be 
solved on the Turing machine, although it is not quite 
correct, since P ⊆ NP. So NP-P problems cannot be 
solved in a polynomial time on the deterministic Turing 
machine. NP-completeness theory foundations were laid 
in a Cook paper presented in 1971 [6]. He has shown 
that any NP problem can be converted into the 
satisfiability problem in a polynomial time. He also has 
demonstrated that there are some other problems, which 
have the same complexity as the satisfiability problem. 
Those problems are “hardest” problems or are an essence 
of NP-class. Later a lot of problems have been shown to 
be as “hard” as the satisfiability problem [10] and those 

problems were called NP-complete problems. The 
formal definition for NP-complete is the following: a 
problem is NP-complete if the problem belongs to NP-
class and any other problem of NP-class can be 
polynomially transformed into this problem. Problems, 
which are at least the same hard, i.e there are NP-
complete tasks that are Turing reducable, are called NP-
hard.  
     There are a lot of algorithms targeted to solve 
different NP-hard problems, mainly concentrating on 
different aspects of a problem to be solved. In this paper 
we are going to highlight another important property - an 
environment where algorithms are applied, which is also 
very important to consider. A lot of applications are 
serving solutions for for real-time systems, which can be 
defined as a system where NP-hard problems should be 
solved during some restricted time. It means that if a 
sub-algorithm serving soltuion is not able to produce it 
during the available time, then it is stopped and the 
current best solution is used. Therefore there is a 
potential conflict between real-time systems and NP hard 
problems requirements (mostly time requirement ) that 
will be reviewed in this paper using the maximum clique 
problem as one of the NP-hard problems. 
     Let G=(V,E) be an undirected graph, where V is the 
set of vertices and E is the set of edges. Two vertices are 
called to be adjacent if they are connected by an edge. A 
clique is a complete subgraph of G, i.e. one whose 
vertices are pairwise adjacent. The maximum clique 
problem is a problem of finding the maximum complete 
subgraph of G, i.e. a set of vertices from G that are 
pairwise adjacent. This problem is NP-hard on general 
graphs [8], i.e. no polynomial time algorithms are 
expected to be found. This problem is choosen as an 
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example of NP hard problems since there is a great 
interest in developing a fast exact algorithm for instances 
with a reasonable number of vertices since it can be used 
in several important practical applications. Examples are 
efficient register allocation [5], on-line bin-stretching 
[1], scheduling of parallel jobs [3] and a lot of others.  
     So far, researches where not really interested in 
considering the real-time environment although a lot of 
applications are hosted in such environments, like 
dispatching, airlines/trains scheduling and controlling 
applications [14]. The real-time systems where reviewed 
in one of our earlier articles [11] where different 
algorithms were reviewed from the real-time systems 
environment point of view. Here this discussion is 
continued by applying artificial intelligence principles to 
an incomplete solution finding, which makes it much 
more efficient. Notice that an idea of adaptive maximum 
clique algorithms is also sometimes discussed in 
conference halls, but unfortunately these discussions 
were not finished so far in a form of an article except 
some our previous works [13] that are about to be 
extended by this paper. 
     The paper is organised as follows. The paper starts in 
the section 2 introducing an “incomplete” solution 
approach that enables analysing different algorithms, 
which are known to be best for the maximum clique 
finding [4, 12, 15], from the real-time systems point of 
view. The next section describes ways of applying 
artificial intelligence principles to the described in the 
introduction topic of the paper. Experiments are 
conducted in the section 4. The last section concludes 
this paper. 
 
 
2   Incomplete Solution 
An “incomplete solution” term describing the real-time 
system case was introduced in one of our previous 
researches [11]. Normally a maximum clique algorithm 
finds a solution somewhere in the middle of its work. 
Thereafter the algorithm tries to prove that it is the 
maximum one by looking through all remaining vertices. 
Some algorithms are able to find the best solution during 
the first iterations, although sometimes it depends on the 
vertices sorting. We will call an “incomplete solution” 
such solution, which is already best/maximum for a 
particular graph, although it is not yet proved. As you 
see, it is rather a state of the maximum clique finding 
process than a type of solution since at the end of ends 
an incomplete solution will become a complete one. This 
state occurs as soon as the maximum clique is found and 
last up to the algorithm’s work end [11]. 
     Applying exact solutions in the real-time systems has 
a clear advantage over using heuristic algorithms. The 
real-time systems don’t guarantee, but potentially could 
provide enough time to find the maximum clique 

therefore there is a certain probability that an exact 
solution will be able to end its work and provide the 
proved solution. 
 

 
 
Fig 1. Maximum clique finding time scheme 
 
     Different algorithms are behaving differently in 
finding the incomplete solution, which is denoted on the 
figure 1 by a grey area moving towards the maximum 
clique level with different speeds from the time scale 
point of view. This line for each individual algorithm is 
greatly depends on the algorithm structure. Therefore it 
is a type of information that: 

o Can be tuned in existing algorithms; 
o Should be considered by the artificial 

intelligence algorithms if any is applied. 
 
     Some algorithms that are good for finding the 
maximum clique in standard systems are slow to find the 
incomplete solution and therefore could be avoided to 
apply in the real-time systems [11]. 
 
 
3   Artificial Intelligence 
There is a clear need to find a way that could guarantee 
applying the best algorithm among available as it was 
shown in the previous subchapter. Some artificial 
intelligence principles can be used to build an algorithm 
that will be able to meet this requirement. A meta-
algorithm idea was proposed in one of our previous 
works for the general problem [13]. The meta-algorithm 
contains all algorithms that can be useful to apply, 
knowledge data and a decision module, which defines 
the best algorithm among available basing on the graph 
properties and knowledge that the meta-algorithm 
already has. 
     Results of applying those ideas to the general 
maximum clique finding case were promising since even 
a simple meta-algorithm produced performance increase 
up to 1.9 times in certain ranges of parameters and never 
was slower. At the same time this effect was not studier 
fully since starts to appear stronger when more different 
graphs instances exist. Another advantage of using the 
meta-algorithm was its adaptivity to particular 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp807-811)



environments where it has to operate. Initial analyses on 
the real-time system from the incomplete solutions point 
of view shows that effect of applying the meta-algorithm 
idea should be much stronger: the real-time systems are 
much more critical, the incomplete solution finding 
process requires much less time, algorithms 
characteristics varies more in the incomplete solution 
case. 
     A central part of the meta-algorithm is its knowledge 
base and the decision module. The meta-algorithm 
designing stage has to define list of parameters to be 
used to make decisions. A density is the first and main 
parameter that should be included into the list, as most 
researches differentiate graph cases by this parameter [4, 
9, 15]. A number of vertices is not so obvious since 
different algorithms’ work-properties grow 
proportionally and the number of vertices doesn’t affect 
those proportions of best-known algorithms. A type of a 
graph is another important parameter to use since there 
are certain algorithms that are either built especially for 
certain types or behave much better on certain types [2]. 
Unfortunately the type identification process is very 
complex (even the graph decomposition task is hard to 
solve) therefore other indirect properties are proposed to 
be used like a source of the graph. Those indirect 
properties could refer to special types, although it 
doesn’t happen always. 
     The decision module can operate using two types of 
knowledge definitions: static and dynamic data. The 
static knowledge is knowledge obtained during previous 
researches and remains unchanged during the meta-
algorithm work-live. Typically it is information about 
some special graphs that can be resolved by special 
algorithms. If dynamic data is missed then pervious 
researches about different algorithms defines fully 
decision rules and a decision tree. An expert type 
algorithm is a good example of such meta-algorithms. 
The dynamic data is data, which is not loaded prior the 
meta-algorithm goes into the operational phase or is 
changing during that. A learning (training) process has to 
be established to derive this type of knowledge. 
     One alternative to learn the meta-algorithm can be to 
train it to use available (inside its) algorithms. It is done 
before the meta-algorithm goes into a production phase, 
i.e. before it starts to work as a part of the real-time 
systems. It is always advisable to use for training 
examples that are either got from the production 
environment or is simulated very closely. This type of 
learning suits first of all to systems that are stable, i.e. 
graphs instances that have be solved are not changing 
dramatically during the system’s live. In that case the 
training prior to real use will guarantee the correct 
process of applying the learned knowledge. 
     If the system is not stable from the graph instances 
point of view or new instances could appear, then it is 

advisable either to re-train the system periodically or 
apply an “online” training process, i.e. training during 
the operation. The real-time systems have to solve 
problems quickly, but sometimes do it rarely and certain 
resources could be available during this “free” time for 
other operations. Those resources can be used to run 
other algorithms with last graph instances to find if other 
algorithms can perform better than the used one. This 
could follow to knowledge reformulation. Different 
points systems, for example, can be used to learn and 
avoid too large affect of old data in case instances of 
some sources are slowly migrating to other types. 
 
 
4   Experiments 
The described principles were applied to the incomplete 
solution finding of the maximum clique problem from 
the randomly generated graphs. The main purpose of 
these tests is to obtain efficiency of applying some 
artificial intelligence principles for finding incomplete 
solutions of an NP- hard problem. Three algorithms were 
used as algorithms that are available to the meta-
algorithm and to compare with. 
     The first algorithm to participate in the testing is a 
very simple and effective algorithm proposed by 
Carraghan and Pardalos [4]. This algorithm was used for 
benchmarking as a base algorithm in the Second 
DIMACS Implementation Challenge [9]. Besides, using 
of this algorithm as a benchmark is advised in one of the 
DIMACS annual reports [7]. The algorithm is a branch 
and bound one and uses number of remaining vertices on 
each depth to prune the maximum clique search tree. 
This algorithm doesn’t spend valuable time on complex 
bounds checking and can be characterised as a direct 
one, from the solution finding point of view. 
     Remaining two algorithms are best known algorithms 
for finding the maximum clique at the moment 
accordingly to articles published during last 3 years. The 
only except among best known algorithms that is not 
included in tests is an algorithm, which is proposed by 
Östergård [16]. The algorithm considers vertices in the 
backward order, i.e. contains so called backtracking 
search logic and therefore is not efficient in the 
incomplete solution [11] finding. Two others algorithms, 
that are used in the work, are very similar since improve 
the first algorithm by using a heuristic vertex colouring 
for the maximum clique search tree pruning formula 
instead of number of remaining vertices. The second 
algorithm is proposed by Tomita and Seki [15] and re-
colour vertices on each new depth of the search tree. The 
third one is proposed by Kumlander [12] and re-uses 
vertex colouring obtained before the maximum clique 
search is started. The last algorithm does not use its 
backtracking search logic, as in the original paper. 
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     A test-program was used to test algorithms that were 
described above. It includes a graph generation subtask 
and a subtask that runs algorithms to be researched and 
measures the spent time. The graph density parameter 
was used to distinguish different tests’ graph cases, since 
the source is the same and cannot be used as an 
additional parameter. 100 graphs are generated for each 
density and densities vary from 5% to 95% with a step 
that equals to 5%. Each generated graph is used as an 
input for each algorithm to be analysed. Experiments 
period was divided into the learning phase and the 
operational one, since the graph generation module was 
producing the same randomised graphs during both 
phases, so training during the operational phase would 
not add much more into the learned knowledge quality. 
An incomplete solution was incorporated into the test in 
the following way: each time a graph instance has to be 
solved, the Tomita and Seki algorithm was used to 
obtain the solution. Thereafter all algorithms were run 
one by one with the maximum clique size as an input 
parameter. As soon an algorithm reaches the maximum 
clique size level it stops (the incomplete solution is 
found). 
     Times for finding a solution are summed up for each 
density by algorithms (for all 100 instances) and an 
algorithm with the shortest time is defined as the best 
one for that density. That algorithm is to be used by the 
meta-algorithm during the operation phase.  
     Results obtained during the operational phase are 
presented as ratios of algorithms summed spent times on 
finding the maximum clique. Those are shown by 
densities. This presentation makes those results 
reproducable on any platform etc., i.e. platforms, 
computers and programming languages independent. 
The meta-algorithm is used here as a benchmarking one. 
Therefore ratios show nothing else than how much 
slower an algorithm is in compare to the meta-algorithm. 
The meta-algorithm selects an algorithm to apply simply 
by following the earlier obtained mapping of best 
algorithms to density parameter therefore additional time 
spent on following rules is nearly 0. Therefore an 
algorithm that was used by the meta-algorithm on each 
density can be seen in the table 2 also – its ratio equals to 
1.00. This makes possible to omit the learned knowledge 
presentation table in that work since the algorithm that 
was used to find solutions for certain density graphs can 
be derived from the results table below by looking for an 
algorithm having 1.00 on that density. Algorithms 
columns headers of the table mean: 
 
     CP – time needed to find the incomplete solution 
(max clique) by Carraghan and Pardalos [4] algorithm 
divided by time needed to find the incomplete solution 
(max clique) using the meta-algorithm; 

     TS – time needed to find the incomplete solution 
(max clique) by Tomita and Seki [15] algorithm divide 
by time needed to find the incomplete solution (max 
clique) using the meta-algorithm; 
     DK – time needed to find the incomplete solution 
(max clique) by Kumlander’s [12] algorithm divided by 
time needed to find the incomplete solution (max clique) 
using the meta-algorithm. 
 
Table 1. Ratios of times needed to find the incomplete 
solution (max clique) 

Density     CP    TS    DK 
   5 %       1.00    5.29    5.36 
 10 %       1.00    3.52    3.30 
 15 %       1.00    2.30    2.48 
 20 %       1.00    1.14    1.17 
 25 %       1.02    1.00    1.10 
 30 %       1.30    1.00    1.16 
 35 %       1.59    1.00    1.50 
 40 %       2.47    1.00    1.66 
 45 %       2.65    1.00    1.96 
 50 %       3.02    1.00    2.44 
 55 %       4.45    1.00    2.82 
 60 %       4.76    1.00    3.52 
 65 %       9.65    1.00    3.42 
 70 %       8.83    1.00    4.05 
 75 %       9.81    1.00    3.91 
 80 %     13.44    1.00    5.26 
 85 %     38.94    1.00    4.84 
 90 %   233.46    1.00    4.61 
 95 % 2542.26    1.00    5.10 

 
     For example 3.02 in the column CP and in the row 
with density 50 % means than Carraghan and Pardalos 
algorithm requires 3.02 times more time than the meta-
algorithm to find the maximum clique from 100 graphs 
having 50% vertices’ density. 
     The results show that in the presented environment 
the meta-algorithm is never slower since there is no 
number less than 1.00. The best algorithm to compare it 
with is the Tomita and Seki [15] algorithm, which was 
used in most cases and its average time ratio is also the 
lowest among others. It is clear to see, that applying only 
Tomita and Seki algorithm on low densities graphs (up 
to 20%) will be slower than the intelligent meta-
algorithm approximately 3 times having no advantages 
on higher densities. 
 
 
5   Conclusion 
In this paper a question of using artificial intelligence 
principles and an incomplete solution approach were 
explored for solving NP hard problems in the real-time 
systems using the maximum clique finding problem as 
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an example. The incomplete solution approach was used 
to fix a moment when an algorithm finds a solution to 
eliminate the proving part of its work. A meta-algorithm 
was proposed to be used, that contains algorithms to 
solve the problem, knowledge and a decision module 
defining, which algorithm to apply. The learning process 
greatly depends on the operational environment stability. 
Learning in operation or prior were proposed, using 
density, source of graphs etc parameters to cluster 
algorithms. Experiments have demonstrated that the 
meta-algorithm in the randomly generated graphs 
environment required up to 3 times less time to find a 
solution in a certain range of graphs than the best known 
general type algorithm, and was never slower in other 
ranges. It demonstrates that applying the artificial 
intelligence principles in the real-time systems can 
produce a sufficient performance improvement of 
solving NP-hard problems in such critical applications. 
The meta-algorithm adaptivity to environments is an 
extra advantage of the described approach. 
     A lot of described algorithms are using different 
heuristics to find bounds, for example the described 
algorithms are using the vertex-colouring subtask for 
that. The future research can be an expansion of artificial 
intelligence principles to different used heuristic as 
different graph types could demand using different 
vertex-colouring approaches. Another topic could be 
researching algorithms on possibility to add artificial 
intelligence into the core of those instead of using just 
outside. 
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