
Applying AI and Incomplete Solution Principles to Solve NP-hard Problems
in the Real-Time Systems

DENISS KUMLANDER

Department of Informatics
Tallinn University of Technology

Raja St.15, 12617 Tallinn
ESTONIA

Abstract: - In this paper a question of using artificial intelligence principles and an incomplete solution approach were
explored for solving NP hard problems in the real-time systems using the maximum clique finding problem as an
example. The incomplete solution is used to analyze different best known algorithms in the real-time environment,
while artificial intelligence principles were implemented in a form of a meta-algorithm containing other problem
specific algorithms. Experiments conducted in this paper have demonstrated that the meta-algorithm in a randomly
generated graphs environment required up to 3 times less time to find a solution in a certain range of graphs than the
best known general type algorithm, and was never slower in other ranges.

Key-Words: - NP-hard problem, maximum clique, artificial intelligence, incomplete solution

1 Introduction
There are a lot of problems that are not so easy to solve
as it looks like at first. A polynomial time algorithm is an
algorithm whose time complexity function is O(p(n)),
where p(n) is a polynomial function. Any algorithm
whose time complexity function cannot be so bounded is
an exponential time algorithm. The first most important
researches in the algorithms complexity area were done
by Turing in the 1940s. Turing has demonstrated that
some problems are “undecidable”, i.e. those problems
can be solved algorithmically. Moreover his works have
greatly affected complexity theory for “decidable”
problems since his abstract computer model, so called
Turing machine, was used for researches and definitions
in this area. NP-class problems are defined as problems
that can be solved on a none-deterministic Turing
machine in a polynomial time [8]. There is a P class as
well, which contains problems that can be solved in a
polynomial time on the deterministic Turing machine,
which is also called just the Turing machine. Sometimes
NP-class is defined as a class of problems that cannot be
solved on the Turing machine, although it is not quite
correct, since P ⊆ NP. So NP-P problems cannot be
solved in a polynomial time on the deterministic Turing
machine. NP-completeness theory foundations were laid
in a Cook paper presented in 1971 [6]. He has shown
that any NP problem can be converted into the
satisfiability problem in a polynomial time. He also has
demonstrated that there are some other problems, which
have the same complexity as the satisfiability problem.
Those problems are “hardest” problems or are an essence
of NP-class. Later a lot of problems have been shown to
be as “hard” as the satisfiability problem [10] and those

problems were called NP-complete problems. The
formal definition for NP-complete is the following: a
problem is NP-complete if the problem belongs to NP-
class and any other problem of NP-class can be
polynomially transformed into this problem. Problems,
which are at least the same hard, i.e there are NP-
complete tasks that are Turing reducable, are called NP-
hard.
 There are a lot of algorithms targeted to solve
different NP-hard problems, mainly concentrating on
different aspects of a problem to be solved. In this paper
we are going to highlight another important property - an
environment where algorithms are applied, which is also
very important to consider. A lot of applications are
serving solutions for for real-time systems, which can be
defined as a system where NP-hard problems should be
solved during some restricted time. It means that if a
sub-algorithm serving soltuion is not able to produce it
during the available time, then it is stopped and the
current best solution is used. Therefore there is a
potential conflict between real-time systems and NP hard
problems requirements (mostly time requirement) that
will be reviewed in this paper using the maximum clique
problem as one of the NP-hard problems.
 Let G=(V,E) be an undirected graph, where V is the
set of vertices and E is the set of edges. Two vertices are
called to be adjacent if they are connected by an edge. A
clique is a complete subgraph of G, i.e. one whose
vertices are pairwise adjacent. The maximum clique
problem is a problem of finding the maximum complete
subgraph of G, i.e. a set of vertices from G that are
pairwise adjacent. This problem is NP-hard on general
graphs [8], i.e. no polynomial time algorithms are
expected to be found. This problem is choosen as an

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp807-811)

example of NP hard problems since there is a great
interest in developing a fast exact algorithm for instances
with a reasonable number of vertices since it can be used
in several important practical applications. Examples are
efficient register allocation [5], on-line bin-stretching
[1], scheduling of parallel jobs [3] and a lot of others.
 So far, researches where not really interested in
considering the real-time environment although a lot of
applications are hosted in such environments, like
dispatching, airlines/trains scheduling and controlling
applications [14]. The real-time systems where reviewed
in one of our earlier articles [11] where different
algorithms were reviewed from the real-time systems
environment point of view. Here this discussion is
continued by applying artificial intelligence principles to
an incomplete solution finding, which makes it much
more efficient. Notice that an idea of adaptive maximum
clique algorithms is also sometimes discussed in
conference halls, but unfortunately these discussions
were not finished so far in a form of an article except
some our previous works [13] that are about to be
extended by this paper.
 The paper is organised as follows. The paper starts in
the section 2 introducing an “incomplete” solution
approach that enables analysing different algorithms,
which are known to be best for the maximum clique
finding [4, 12, 15], from the real-time systems point of
view. The next section describes ways of applying
artificial intelligence principles to the described in the
introduction topic of the paper. Experiments are
conducted in the section 4. The last section concludes
this paper.

2 Incomplete Solution
An “incomplete solution” term describing the real-time
system case was introduced in one of our previous
researches [11]. Normally a maximum clique algorithm
finds a solution somewhere in the middle of its work.
Thereafter the algorithm tries to prove that it is the
maximum one by looking through all remaining vertices.
Some algorithms are able to find the best solution during
the first iterations, although sometimes it depends on the
vertices sorting. We will call an “incomplete solution”
such solution, which is already best/maximum for a
particular graph, although it is not yet proved. As you
see, it is rather a state of the maximum clique finding
process than a type of solution since at the end of ends
an incomplete solution will become a complete one. This
state occurs as soon as the maximum clique is found and
last up to the algorithm’s work end [11].
 Applying exact solutions in the real-time systems has
a clear advantage over using heuristic algorithms. The
real-time systems don’t guarantee, but potentially could
provide enough time to find the maximum clique

therefore there is a certain probability that an exact
solution will be able to end its work and provide the
proved solution.

Fig 1. Maximum clique finding time scheme

 Different algorithms are behaving differently in
finding the incomplete solution, which is denoted on the
figure 1 by a grey area moving towards the maximum
clique level with different speeds from the time scale
point of view. This line for each individual algorithm is
greatly depends on the algorithm structure. Therefore it
is a type of information that:

o Can be tuned in existing algorithms;
o Should be considered by the artificial

intelligence algorithms if any is applied.

 Some algorithms that are good for finding the
maximum clique in standard systems are slow to find the
incomplete solution and therefore could be avoided to
apply in the real-time systems [11].

3 Artificial Intelligence
There is a clear need to find a way that could guarantee
applying the best algorithm among available as it was
shown in the previous subchapter. Some artificial
intelligence principles can be used to build an algorithm
that will be able to meet this requirement. A meta-
algorithm idea was proposed in one of our previous
works for the general problem [13]. The meta-algorithm
contains all algorithms that can be useful to apply,
knowledge data and a decision module, which defines
the best algorithm among available basing on the graph
properties and knowledge that the meta-algorithm
already has.
 Results of applying those ideas to the general
maximum clique finding case were promising since even
a simple meta-algorithm produced performance increase
up to 1.9 times in certain ranges of parameters and never
was slower. At the same time this effect was not studier
fully since starts to appear stronger when more different
graphs instances exist. Another advantage of using the
meta-algorithm was its adaptivity to particular

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp807-811)

environments where it has to operate. Initial analyses on
the real-time system from the incomplete solutions point
of view shows that effect of applying the meta-algorithm
idea should be much stronger: the real-time systems are
much more critical, the incomplete solution finding
process requires much less time, algorithms
characteristics varies more in the incomplete solution
case.
 A central part of the meta-algorithm is its knowledge
base and the decision module. The meta-algorithm
designing stage has to define list of parameters to be
used to make decisions. A density is the first and main
parameter that should be included into the list, as most
researches differentiate graph cases by this parameter [4,
9, 15]. A number of vertices is not so obvious since
different algorithms’ work-properties grow
proportionally and the number of vertices doesn’t affect
those proportions of best-known algorithms. A type of a
graph is another important parameter to use since there
are certain algorithms that are either built especially for
certain types or behave much better on certain types [2].
Unfortunately the type identification process is very
complex (even the graph decomposition task is hard to
solve) therefore other indirect properties are proposed to
be used like a source of the graph. Those indirect
properties could refer to special types, although it
doesn’t happen always.
 The decision module can operate using two types of
knowledge definitions: static and dynamic data. The
static knowledge is knowledge obtained during previous
researches and remains unchanged during the meta-
algorithm work-live. Typically it is information about
some special graphs that can be resolved by special
algorithms. If dynamic data is missed then pervious
researches about different algorithms defines fully
decision rules and a decision tree. An expert type
algorithm is a good example of such meta-algorithms.
The dynamic data is data, which is not loaded prior the
meta-algorithm goes into the operational phase or is
changing during that. A learning (training) process has to
be established to derive this type of knowledge.
 One alternative to learn the meta-algorithm can be to
train it to use available (inside its) algorithms. It is done
before the meta-algorithm goes into a production phase,
i.e. before it starts to work as a part of the real-time
systems. It is always advisable to use for training
examples that are either got from the production
environment or is simulated very closely. This type of
learning suits first of all to systems that are stable, i.e.
graphs instances that have be solved are not changing
dramatically during the system’s live. In that case the
training prior to real use will guarantee the correct
process of applying the learned knowledge.
 If the system is not stable from the graph instances
point of view or new instances could appear, then it is

advisable either to re-train the system periodically or
apply an “online” training process, i.e. training during
the operation. The real-time systems have to solve
problems quickly, but sometimes do it rarely and certain
resources could be available during this “free” time for
other operations. Those resources can be used to run
other algorithms with last graph instances to find if other
algorithms can perform better than the used one. This
could follow to knowledge reformulation. Different
points systems, for example, can be used to learn and
avoid too large affect of old data in case instances of
some sources are slowly migrating to other types.

4 Experiments
The described principles were applied to the incomplete
solution finding of the maximum clique problem from
the randomly generated graphs. The main purpose of
these tests is to obtain efficiency of applying some
artificial intelligence principles for finding incomplete
solutions of an NP- hard problem. Three algorithms were
used as algorithms that are available to the meta-
algorithm and to compare with.
 The first algorithm to participate in the testing is a
very simple and effective algorithm proposed by
Carraghan and Pardalos [4]. This algorithm was used for
benchmarking as a base algorithm in the Second
DIMACS Implementation Challenge [9]. Besides, using
of this algorithm as a benchmark is advised in one of the
DIMACS annual reports [7]. The algorithm is a branch
and bound one and uses number of remaining vertices on
each depth to prune the maximum clique search tree.
This algorithm doesn’t spend valuable time on complex
bounds checking and can be characterised as a direct
one, from the solution finding point of view.
 Remaining two algorithms are best known algorithms
for finding the maximum clique at the moment
accordingly to articles published during last 3 years. The
only except among best known algorithms that is not
included in tests is an algorithm, which is proposed by
Östergård [16]. The algorithm considers vertices in the
backward order, i.e. contains so called backtracking
search logic and therefore is not efficient in the
incomplete solution [11] finding. Two others algorithms,
that are used in the work, are very similar since improve
the first algorithm by using a heuristic vertex colouring
for the maximum clique search tree pruning formula
instead of number of remaining vertices. The second
algorithm is proposed by Tomita and Seki [15] and re-
colour vertices on each new depth of the search tree. The
third one is proposed by Kumlander [12] and re-uses
vertex colouring obtained before the maximum clique
search is started. The last algorithm does not use its
backtracking search logic, as in the original paper.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp807-811)

 A test-program was used to test algorithms that were
described above. It includes a graph generation subtask
and a subtask that runs algorithms to be researched and
measures the spent time. The graph density parameter
was used to distinguish different tests’ graph cases, since
the source is the same and cannot be used as an
additional parameter. 100 graphs are generated for each
density and densities vary from 5% to 95% with a step
that equals to 5%. Each generated graph is used as an
input for each algorithm to be analysed. Experiments
period was divided into the learning phase and the
operational one, since the graph generation module was
producing the same randomised graphs during both
phases, so training during the operational phase would
not add much more into the learned knowledge quality.
An incomplete solution was incorporated into the test in
the following way: each time a graph instance has to be
solved, the Tomita and Seki algorithm was used to
obtain the solution. Thereafter all algorithms were run
one by one with the maximum clique size as an input
parameter. As soon an algorithm reaches the maximum
clique size level it stops (the incomplete solution is
found).
 Times for finding a solution are summed up for each
density by algorithms (for all 100 instances) and an
algorithm with the shortest time is defined as the best
one for that density. That algorithm is to be used by the
meta-algorithm during the operation phase.
 Results obtained during the operational phase are
presented as ratios of algorithms summed spent times on
finding the maximum clique. Those are shown by
densities. This presentation makes those results
reproducable on any platform etc., i.e. platforms,
computers and programming languages independent.
The meta-algorithm is used here as a benchmarking one.
Therefore ratios show nothing else than how much
slower an algorithm is in compare to the meta-algorithm.
The meta-algorithm selects an algorithm to apply simply
by following the earlier obtained mapping of best
algorithms to density parameter therefore additional time
spent on following rules is nearly 0. Therefore an
algorithm that was used by the meta-algorithm on each
density can be seen in the table 2 also – its ratio equals to
1.00. This makes possible to omit the learned knowledge
presentation table in that work since the algorithm that
was used to find solutions for certain density graphs can
be derived from the results table below by looking for an
algorithm having 1.00 on that density. Algorithms
columns headers of the table mean:

 CP – time needed to find the incomplete solution
(max clique) by Carraghan and Pardalos [4] algorithm
divided by time needed to find the incomplete solution
(max clique) using the meta-algorithm;

 TS – time needed to find the incomplete solution
(max clique) by Tomita and Seki [15] algorithm divide
by time needed to find the incomplete solution (max
clique) using the meta-algorithm;
 DK – time needed to find the incomplete solution
(max clique) by Kumlander’s [12] algorithm divided by
time needed to find the incomplete solution (max clique)
using the meta-algorithm.

Table 1. Ratios of times needed to find the incomplete
solution (max clique)

Density CP TS DK
 5 % 1.00 5.29 5.36
 10 % 1.00 3.52 3.30
 15 % 1.00 2.30 2.48
 20 % 1.00 1.14 1.17
 25 % 1.02 1.00 1.10
 30 % 1.30 1.00 1.16
 35 % 1.59 1.00 1.50
 40 % 2.47 1.00 1.66
 45 % 2.65 1.00 1.96
 50 % 3.02 1.00 2.44
 55 % 4.45 1.00 2.82
 60 % 4.76 1.00 3.52
 65 % 9.65 1.00 3.42
 70 % 8.83 1.00 4.05
 75 % 9.81 1.00 3.91
 80 % 13.44 1.00 5.26
 85 % 38.94 1.00 4.84
 90 % 233.46 1.00 4.61
 95 % 2542.26 1.00 5.10

 For example 3.02 in the column CP and in the row
with density 50 % means than Carraghan and Pardalos
algorithm requires 3.02 times more time than the meta-
algorithm to find the maximum clique from 100 graphs
having 50% vertices’ density.
 The results show that in the presented environment
the meta-algorithm is never slower since there is no
number less than 1.00. The best algorithm to compare it
with is the Tomita and Seki [15] algorithm, which was
used in most cases and its average time ratio is also the
lowest among others. It is clear to see, that applying only
Tomita and Seki algorithm on low densities graphs (up
to 20%) will be slower than the intelligent meta-
algorithm approximately 3 times having no advantages
on higher densities.

5 Conclusion
In this paper a question of using artificial intelligence
principles and an incomplete solution approach were
explored for solving NP hard problems in the real-time
systems using the maximum clique finding problem as

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp807-811)

an example. The incomplete solution approach was used
to fix a moment when an algorithm finds a solution to
eliminate the proving part of its work. A meta-algorithm
was proposed to be used, that contains algorithms to
solve the problem, knowledge and a decision module
defining, which algorithm to apply. The learning process
greatly depends on the operational environment stability.
Learning in operation or prior were proposed, using
density, source of graphs etc parameters to cluster
algorithms. Experiments have demonstrated that the
meta-algorithm in the randomly generated graphs
environment required up to 3 times less time to find a
solution in a certain range of graphs than the best known
general type algorithm, and was never slower in other
ranges. It demonstrates that applying the artificial
intelligence principles in the real-time systems can
produce a sufficient performance improvement of
solving NP-hard problems in such critical applications.
The meta-algorithm adaptivity to environments is an
extra advantage of the described approach.
 A lot of described algorithms are using different
heuristics to find bounds, for example the described
algorithms are using the vertex-colouring subtask for
that. The future research can be an expansion of artificial
intelligence principles to different used heuristic as
different graph types could demand using different
vertex-colouring approaches. Another topic could be
researching algorithms on possibility to add artificial
intelligence into the core of those instead of using just
outside.

References:
[1] Y. Azar, O. Regev, On-line bin stretching,

Theoretical Computer Science, Vol. 268, 2001, pp.
17-41

[2] C. Berge, V. Chv'atal, Topics on Perfect Graphs,
Ann. Discrete Math., Vol. 21, North-Holland,
Amsterdam, 1984

[3] S. Bischof, E.W. Mayr, On-line scheduling of
parallel jobs with runtime restrictions, Theoretical
Computer Science, Vol. 268, 2001, pp. 67-90

[4] R. Carraghan, P.M. Pardalos, An exact algorithm for
the maximum clique problem, Op. Research Letters,
Vol. 9, 1990, pp. 375-382

[5] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J.
Cooke, M.E. Hopkins, P. Markstein, Register
allocation via coloring, Computer Languages, Vol. 6,
1981, pp. 47-57

[6] S.A. Cook, The complexity of theorem proving
procedures, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, 1971, pp. 151-
158

[7] DIMACS, Annual Report, Center for Discrete
Mathematics and Theoretical Computer Science,
1999

[8] M.R. Garey, D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
completeness, Freeman, New-York, 2003

[9] D.S. Johnson, M.A. Trick, Cliques, Colouring and
Satisfiability: Second DIMACS Implementation
Challenge, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, American
Mathematical Society, Vol. 26, 1996

[10] R.M. Karp, Reducibility among combinatorial
problems, In complexity of Computer Computations,
Plenum Press, New York, 1972, pp. 85-103

[11] D. Kumlander, Incomplete solution approach for
the maximum clique finding in the real-time systems,
Proceedings of the IASTED International Conference
on Artificial Intelligence and Applications, 2006, pp.
75-79

[12] D. Kumlander, A practical algorithm for the
maximum clique finding, Proceedings of the IADIS
International Conference Applied Computing, 2006,
pp. 266-272

[13] D. Kumlander, Improving the maximum clique
finding applications using artificial intelligence
principles, Proceedings on the 7th WSEAS
International Conference on Automation and
Information, 2006, pp. 132-137

[14] D.J. Musliner, J.A. Hendler, A.K. Agrawala, E.H.
Durfee, The Challenges of Real-Time AI, Computer,
Vol 28, No. 1, 1995, 58-66

[15] E. Tomita, T. Seki, An effcient branch-and-bound
algorithm for finding a maximum clique, Discrete
Mathematics and Theoretical Computer Science, 4th
International Conference, LNCS 2731 Springer, Vol.
2003, pp. 278-289

[16] P.R.J. Östergård, A fast algorithm for the maximum
clique problem, Discrete Applied Mathematics, Vol.
120, 2002, pp. 197-207

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp807-811)

