
On Software Design and Development Supporting Requirements
Formulation

DENISS KUMLANDER

Department of Informatics
Tallinn University of Technology

Raja St.15, 12617 Tallinn
ESTONIA

Abstract: The software engineering is evolving on the permanent base. This evolution highlights some issues
that were hidden so far or appeared with new techniques. In this paper an idea of supporting software design is
proposed and extended to the whole software development cycle. Thereafter communication gaps are
examined, which are important to avoid for successful implementation of the proposed technique. Several
methods to avoid such gaps are introduced. Finally two companies’ cases are described where the proposed
methodology is applied. Those companies are quite typical therefore advices can be used in other companies
having the same troubles.

Key-Words: software engineering, software design, requirements gathering, supporting software design

1 Introduction
The ultimate goal of developing any software is to
provide customers with tools that will help them run
their business in a better way. Nowadays increasing
competition and globalisation of business demands
much higher quality of the released software, much
shorter development cycle and increased flexibility
of defining requirements. The proper software
implementation over the low quality one provides
benefits for both projects sides – mostly because of
saving resources, quicker applying the software that
business needs to have, better imago for software
providers and some others. Unfortunately many
software projects are far from the described goals
and the number of failing projects is still high.
 The goals of software engineering are to make
the software development simpler and the resultant
software better [3]. There are a lot of software
development principles that are more or less similar
and are basing on some common for all techniques.
The software industry advanced a lot by applying
those technologies and solving major problems we
had in the past. At the same time it also brings
forward problems that so far looked to be easy to
avoid. In this paper we are going to propose a
methodology allowing stabilising the software
development process by increase the quality and
decreasing the implementation time. The paper
extends our previous researches [4, 5] to the full
software development cycle. The paper also
examines problems arising because of bad
communication between different team members
and demonstrates how it can be solved.

 The paper is organised as follows. The section 2
briefly describes the software development work
cycle. The following section introduces the
supporting software design principle and discusses
its different aspects. The question of communication
gaps is examined in the section 4. Some project
cases where the proposed methodology is revised in
the section 5. The last section concludes the paper.

2 Classical Work Cycles

2.1 Software development
There are a lot of models for software development
and some of them are quite basic ones like the
waterfall or spiral software development [1]
methodologies. It is a bit hard to build a model that
could adequately reflect all those on a general level,
but the following very simple one should
demonstrate basic principles from most of them.
 The model contains three parts: requirements,
then design, thereafter software (program code) and
this can result in developing new requirements.

Fig. 1 Software development work-cycle

 Of course this model could include more steps,
could be presented as a model of phases, activities

Requirements Design

Software
(program code)

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

etc., but it still demonstrates the software
development process quite adequately. A new
software development usually starts from the
requirements formulation. Those could be
formulated by special persons called business
analysts, could be provided by customers or could
be a result of requirements gathering process on the
customer sites, i.e. collaboration between business
analysts and customers. Anyway it is a set of
documents describing what and how should be done
from the customer/business/functionality point of
view. The next step is developing a design that
defines what could be done and how it will be done
from the technical point of view, how processes will
be connected and implemented in the future
software package. The design is build basing on the
requirements document, which can be seen as an
input parameter for the design formulation. The
design is implemented in a form of the software
programming code, which is shipped to the
customer and contains all required features. New
requirements could arise after users started to use
the implemented software and a new cycle will start.

2.2 Reengineering
The software reengineering process is very similar
to the previously described one and also starts from
the requirements formulation. The main difference is
that requirements are formulated basing on an
existing software package for rebuilding or
reengineering that. Therefore the existing software is
usually a starting point of the development cycle.
The diagram contains the same steps and is just
transformed by rotating.

Fig. 2 Software reengineering work-cycle

 In this software development case the source
system is studied at the first step to find out existing
processes, bottlenecks, number and kind of
documents in use and so forth. New requirements
are also gathered as it was done in the new software
development process described above and then
mixed up with the existing logic to produce new
system requirement, then design and thereafter a
new system.

2.3 Special methodologies for different software
companies types

Previously described work cycles are general and
demonstrate overall software development
procedure and steps connections. The quick
development of the software industry and increasing
level of globalisation, which results in the higher
competition between software providers, makes
software companies to look for specific segments to
operate in. Such segments are very different and
therefore require sometimes different approaches to
the software development process. The described
work-cycles’ steps are basic guidelines from which
different variations are derived. Each specific
methodology depends on a software company
(software department) profile and parameters like
type of projects, type of the company etc.
 A company that implements products for external
customers usually uses a work cycle typical for the
agility type methodologies. It contains iterations of
the fixed size, which results in a complete software
package ready to be installed and used by the
customer. The planning for the next iterations is a
bit light, as the company doesn’t know in advance
what the customer will want to do afterwards. The
customer can freeze the product; the next release
could be less profitable than some other customers’
software projects etc. It is very similar to building a
wall from bricks from the project planning point of
view: all bricks (projects iterations) have the same
size and are independent, so instead of continuing
the previous one the software company could start
another. One more option is to move iterations
between different teams. The independency between
blocks is reached by making iterations that are
complete and ready to be shipped.
 Another typical type of a software company is a
software department inside a large company that
uses IT solutions to support the main business. The
main target of that software department is to
optimise with their IT solutions the overall company
efficiency, so the department efficiency is not
important by itself. The department should provide
high level services to other departments and usually
deals either with one or with a limited number of
software projects. Besides the customer of the
department locates close and this simplify
requirements formulation process, software
reviewing process and so forth. There are a set of
methodologies and development framework that
suits perfectly to such software developers. Those
include different analysis processes starting from the
business logic and ending with infrastructure,
networking etc analyses that are deep allowing

Requirements

Design

Software
(program code)

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

increasing the performance in all elements of the
developed software.

3 Supporting software design
3.1 Essence of the supporting software design
The classical software development work-cycle
shows that any next step of the software
development is done only if the previous one is
completed. For example, the design can be started
only after the requirements are formulated and
provided to software designers. There are several
basic ways of gathering requirements: customers
could provide those; the software company business
analyst will formulate or the first and the second one
will be combined. Unfortunately the real world is
not perfect and requirements are not perfect and
complete as those should be from the theoretical
approach point of view. There could be a loss of
information, which is described in the later chapter
of this article. The customer could formulate
requirements wrong – sometimes they don’t know
exactly what they would like to have and this will be
detected only when the developed software is
reviewed etc. That is why design and programming
are done sometimes despite requirements,
programming despite design etc. It happens since
some number of errors is found in the previous steps
documents that makes impossible to do the
following steps without correcting those, and usually
this correction happens on those next steps instead
of returning back. Notice also that nowadays
business world is changing very fast forcing
companies to be flexible and may be change
requirements during the development cycle. The
globalisation adds pressure to software companies
forcing them to compete with many other software
developers and provide highest services. Therefore
sometimes there is no time to make the full cycle
before errors will be fixed especially if those were
detected on early project stages. There is a need for
the software development approach that could
include efficient feedback information flow for each
cycle’s step. The central idea of the supporting
design is to use design to verify requirements,
design to get all information and requirements from
customers including information on the
requirements uncertainty and so forth. The approach
proposes to see the design as an additional tool that
could help in formulating requirements and breaks
the rule that requirements should be completely
formulated first and only then the design; having
those steps in parallel. This principle could be
extended to other steps also and should be defined as

using each step to help doing correctly the previous
one. The idea is in making different steps team
members to collaborate, provide feedback and then
the quality level of the product will increase.

Fig. 3 Applying supporting software design
principles to the software development work-cycle

 The question of how different team members can
collaborate is described in the following subchapters
and now only general level principles will be
provided. Notice that the collaboration process helps
to find errors since in many cases next steps are
done more “precisely”, i.e. include much more
details and therefore could be used to verify
previous steps. Ideally the collaboration step should
be done using common documents, i.e. documents
that are used by collaborating team members,
although sometimes it is not possible. Anyway the
feedback could be provided either directly if a
problem is identified by the next step team members
or indirectly by establishing the reviewing process.
During this activity team members of the previous
step review the work done by the next step team
members to ensure that their thoughts are
understood and implemented correctly so far. Notice
the “so far” part of the sentence. The efficiency of
the reviewing process will increase if it is done more
times than just once after the task to be reviewed is
completed. It will allow finding and fixing errors
much earlier saving a lot of resources. Each team
could define their own period of recurring reviews
depending on the project, team and other properties
and goals. A balance should be found between doing
reviews and providing feedback too much and too
less. Each activity should optimise the overall
performance of the software development process.
 Finally the prototyping process has to be
mentioned. Classically the prototyping means
developing a quite restricted model (sometimes it
does include only the user interface) for verifying
requirements and design. The proposed
methodology is much wider and could be described
as extending prototyping to each step and to each
type of activity/document to be produced, i.e.
prototyping of requirements, prototyping of design
and so forth. Now we are about to study close each

Requirements Design

Software
(program code)

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

connection of the previously described software
development work-cycle.

3.2 Design and requirements formulation
The first connection between activities to be
reviewed is the requirements formulation and the
design phase followed by that. The ideal
requirements document contains all necessary
information about what and how it should be done
and the design transforms it into the technical
description including programming languages
syntax for all features that can be done using one or
another technology. Unfortunately requirements are
not perfect and usually uncertain because of errors,
missed information and sometimes could be
changed during the project because of new
regulations that customer should adopt etc. This
demonstrates that there is a gap between
requirements and design and sometimes designers
decide how the system will look like by themselves.
This could produce many errors as such design
could be invalid. Therefore the collaboration
between the requirements gathering team and the
design team is needed to do required features right.
This allows moving new information on later design
stages to the design team and having a feedback on
errors and later corrections. If the collaborative team
is created then requirements will be both correct and
correspond to real customers needs instead of been
list of one person wrongful suggestion on what is
needed. The design construction process always
requires describing the future system on more
detailed level than it used to be in the requirements
documents and therefore verifies the requirements.
Sometimes the designer also have a deeper
knowledge about previous releases and could have a
broader vision about what places of the product
could be affected by new features and provides to
the requirements formulating team this information
if they have missed something. The close work of
those teams will ensure the correctness of a new
system. The central idea of the supporting software
design is to help verify requirements and reach
customers’ goals using design; do design so that it
will contain all information we have in requirements
including information on those uncertainty.

3.3 Development and design
Another process to be reviewed is the design and the
development phases’ connection. The ideal design,
as it is described the literature usually, should be so
deep that developers could program by it just
converting the designed functionality into a

programming language. The design should contain
all elements like the business logic, a description of
objects and functions allowing them to cooperate
and much more. Moreover there are a lot of ideas of
automating converting the design directly into code
[6] that eliminates developers from the software
development process. Unfortunately this situation is
an ideal one and a lot of software companies have
troubles applying these plans. The first problem is
that the development of design on a very low level,
which is needed for the automatic code generation,
requires a lot of efforts. It is the same complex from
the amount of work point of view as the actual
programming. Notice also that it is easier to find
developers than to find the same number of
designers. Therefore design usually contains less
information that is required for the automatic
generation of the ready to ship project and
developers are completing the programming phase.
Another reason why developers are still presented is
that they are able to identify a lot of problems in the
design and they do that. It can be seen as a perfect
testing method for the design completeness, since
developers are writing their code on the lowest level
for the project and always have to consider all cases
- like all branches of the conditional structures. If
any code’s branch is missing then developers see
that much better than designers. Skilled developers
are constantly doing the “what-if” analysis writing
the code and this brings a lot of designer errors up.
The automatic generation programs are not
intellectual enough so far to detect a missing code
and do the “what–if” analyses.
 That some arguments having developers still in
the project team and therefore collaboration between
software designers and developers should also be
carefully considered. The first important question is
the design grain. It is quite hard to find a level of the
design details that will illustrate completely the
designed logic and will not be too complex to
produce. There are much more developers than
designers and they could and should support the
design process by implementing their code and
producing an efficient feedback to the designers
about design errors. Besides involving into the
design a set of new persons could help to find new
ideas for the design. This is also a very good
motivation factor for developers to stay in the
company as they can see and feel that they could
affect the project with good ideas. Ideas that are not
accepted by designers are also not a problem but
rather an advantage for the project. First of all such
close work between designers and developers
enables identifying incorrect understanding of
features and business logic by developers on early

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

stages – before a lot of resources will be used to
program a wrong code. That is why such
collaboration is worth to have. Besides ideas that are
not accepted by designers allows developers better
following the business logic of the problem, the
designers ideas and makes development much more
efficient.

4 Avoiding Communication Gaps
4.1 Communication gaps description
Problems in communication between members of a
project are a very serious danger for the project and
could lead to loosing a lot of time and efforts. The
efficient feedback cannot be organised without a
smooth communication. Moreover the same
problem could exist in the classical approach since
those affects any communications un-regarding their
direction [8]. In this paper the designer-business
analyst and designer-developer communications are
analysed, although specialists in other areas could
extend this analysis to communications between
other software development team members like
testers, installers etc.
 The communication gap can be defined as some
kind of a problem in the communication process that
makes the transferred information to be either lost or
deformed [5]. There are different reasons of
communication gaps existence and main of them are
listed below. Notice that some communication gaps
are specific to a certain communication place (i.e.
specific to communication between certain team
members) and some of them are general.
 One reason of the communication gap could be a
physical distance between a requirements definer
and a designer workplace. The designer in this
situation cannot just walk, for example, into the
customer’s office and talk face-to-face or ask to
review the design/gathered requirements or do other
things the designer needs to be done. Besides such a
distance force them also to communicate in a “none-
visual” manner that usually makes the
communication between two different people much
more problematic. Researches prove that the
“visual” feedback is very important part of the
communication process. That field works
demonstrate that it provides from 20% to 40% of
information [2, 7]. So, lacking of “visual” feedback
of an opponent reaction makes the communication
problem larger since a lot of important information
is hidden. It is also a common problem to organize
“enough” meetings with customers since they are
usually occupied with their business. The same
problem could exist in communication with software

company business analysts that are formulating
requirements if those are over-occupied with too
many projects. Notice that such problems are
usually not presented between designers and
developers as those are usually grouped into the one
team in the same location (so called development
department) although it not always true. The
globalisation and outsourcing produced now a
certain number of teams where designers are located
at the main office together with business analysts
and developers are located somewhere else. In that
scenario designers have the described problems with
developers as they cannot continuously force
developers to follow the design and developers are
lazy enough to ask something over emails. A lot of
outsourcing using companies are facing such
problems and it is clear that they need to improve
the communication between those teams.
 Another sources of gaps come from one more
general level problem of communication between
persons, which is explained by different experience,
skills, available information, life’s and work’s
environments and culture backgrounds. This
problem occurs on any level of team members’
communication since they are on different positions
that means are having very different backgrounds
and knowledge sets. This problem presents also in
the communication to external persons like
customers who are interviewed on requirements etc.
The interviewer can miss important information that
the customer’s representative does provide or can
miss an area to ask about because of that.
 One more common problem is a form of the
work documents, like requirements and design
documents. The document should be a source for
collaboration of team members. Notice also that
there is an old saying: “If it is not written then it is
not said”. Project documents that cannot be correctly
understood by all project members involved in the
communication are a common source of
misunderstanding and communication gaps. Another
danger is having a set of document instead of
common documents, i.e. if each team member hosts
its own one. The problem here lies in the un-
synchronisation between those and leads to the
losing some information during transferring it from
a document to document on different project
development levels.
 Here the communication gaps that were
described so far are recollected:
• Impossibility to collaborate quickly;
• Impossibility to do/force to do something if it is

needed;

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

• Loss of information during a communication
because of different experience, available
information and so forth;

• Loss of information during a communication
because of “none-visual communication;

• Loss of information due inappropriate
information presentation in collaboration
documents;

• Loss of information due to much number of
document to be produced;

 All those communication gaps could decrease
sufficiently the efficiency of applying the supporting
design principles and even lead to a project fail.
Therefore those should be closely monitored and
eliminated as soon as possible. Those represent risks
that lead to loosing time, improper spending of
resources and so forth.

4.2 Methodologies to avoid communication gaps
Here we are giving an overview of methods to solve
or avoid communication gaps described in the
previous subchapter.
• Apply the supporting design principles;
 This will ensure moving of information, the
collaborative work and detection of many errors
with efficient feedback. Try to identify errors as
soon as possible using a well established reviewing
process.
• If it is possible then make development circles

shorter in the iterational development;
 Divide your project into a set of steps/iterations,
for example, ones a month. An output of each
development iteration is a part of software
(iteration’s features) that should be reviewed by the
product manager. Customers and the product
manager will fill much more comfortable since they
will have a better understanding of the work
progress.
• Define rules, good practices and processes as

clear and simple as possible;
 The most common problem in many software
companies is lack of rules for documenting and
reviewing requirements, designs etc. If nobody is
responsible for doing that or such responsibility is
shared among two or more persons then nobody will
do it and errors that are easy to fix on early stages
will be hard to fix later and will demand a lot of
resources for rebuilding the project. Notice that rules
should be simple and clear otherwise nobody will
follow those. Therefore it is not enough to establish
rules. Those should be followed as well otherwise
there is no point to have them. An ideal solution will

be to involve workers into formulating rules since
they will surely follow rules they made. They will
know why those are established and why those looks
like those are.
• Regular meetings between designers and product

managers, designer and developers handling the
list of open issues.

 Short recurring meetings with the clear list of
follow up for each participant till the next one. Each
team could find their own best time scale. Generally
daily 30 minutes meetings are recommended to see
the work progress and answer questions so that all
will know answers. Such broad discussion and
answering makes all knowledgeable about different
parts of design, requirements etc., so the information
will not flow only through several selected persons.
Notice again that all clarifications like for example a
detailed description of the workflows need to be
documented for the future reference.
• Better preparations for each meeting; each

meeting participant should be ready to solve
problems;
o Good timing for the meetings with respect of

the time difference if the meeting will include
persons from different time zones. Persons
should be neither too tired nor sleepy
otherwise the communication gap will
increase instead of decreasing – the manager
is sure that informed the worker about an
issue, but the worker missed this information
because he is too tired;

o All documents need to be distributed in
advance before the meeting. Otherwise
documents are not studied and meeting will
not be efficient.

o Everybody should think about goals and
review previous meeting notes to find, which
issues are pending.

• Motivate team members to ask question and
explain how they do understand requirements,
design etc.

 First of all notice that some persons are not brave
enough to say a word and usually those are the
weakest part of the team producing communication
gaps and incorrect implementation of code, design
etc. Thereafter consider that most obvious issues
sometimes are not so obvious and team members
can realise that only after they have started discuss
them. Notice also that nobody can explain
something using own words if he doesn’t understand
what he is going to say. Motivate team members to
explain how they have understood the complex task.
This will ensure that he has understood all things
correctly and will make him to rethink the task.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

• Force to underwrite documents by all involved
team members;

 For example the functional specification’s
underwriting will mean – by the business analyst
that is it complete and correct; by the designer that
he does understand it. Of course it should not be too
big restriction for later questions and changing, but
at least will force all persons to read and understand
what is done instead of postponing this process to
later phases, when changes and fixes will be much
more expensive.

5 Varying Time Intervals Iterational
Development
Today the iterational development is widely adopted
in the software development and the work-cycle
reflects that also by its cyclic structure. Dividing any
project into iterations allows releasing features
constantly making the progress of the software
development visible to the customer. This process is
very important from the avoiding communication
errors also since enables finding errors after some
iteration instead of at the end of the large project
after years of programming. The iterational
development [9] can also be seen as a part of the
supporting design and development as it is nothing
else than an ultimate general level feedback.
 The main question to be highlighted here is the
iterations size from the period point of view. The
agility methodology defines that releases have to be
done each month and employs this idea for the
flexible planning enabling to switch easily between
products/versions to be released next as the
iterations have the same size. This model suits very
well for software companies having quite a long list
of customers with different products or to software
departments providing different software to a lot of
other departments inside a large corporate
organisation. In other cases the iteration size can be
defined by the software company and some do
release new versions each half year, some do it 3
times a year etc. The supporting software design
principles allows stabilizing products and such long
releases do fit into the methodologies, but the ideal
case will be to have iterations of different sizes. If
features to be included requires less time to program
than the usual one then this release could and should
be done earlier to find out incorrect places. The full
cycle feedback is quite important. It can be proved
by the fact that user acceptant tests, which are
normally done before the product is released, detect
certain number of mis-modellings and incorrectly

produced features and the varying period iterations
could minimize time of finding such errors.

6 Cases Study
Here we will review some companies where the
proposed approach was applied to decrease number
of errors, mistakes and redesign and this way to
decrease spent time on projects and increase
personnel productivity. Notice that the described
approach is not targeted to fit all software
companies’ development models. There are a lot of
cases where requirements, design etc are stable
enough or the approach cannot be used because of
some restriction, could be incompatible to company
policies etc. At the same time a lot of companies
could benefit from applying this methodology right.
Moreover some of them do it already trying to
eliminate the feedback connections at the same time
to fit into standard methodologies. The proposed
ideas will make the software development process in
such companies much more organised.

6.1 Case 1: a global software company
The fist company to be reviewed here is a global
corporation having a software development as one
of the main activities. It is a typical
telecommunication corporation producing variety of
products like telecommunication equipment,
software for logistics and warehouses etc. The
department we were working with was producing
the logistics software. The team size was around 75
persons and was distributed across 2 countries. The
business analysts and designers department was
located in Western Europe and the development
department in India. The major problem the team
had when we started to work with them was a low
quality of releases and very long development
process (up to 2 years) of each software package
version. The main reasons of these troubles were
identified as: a lot of communications gaps; each
version used to be internally released several times,
each release took around 6 months and had to be
reprogrammed since there were a lot of inaccurately
implemented features.
 There were two reason of inadequate
programming of features: developers were not
following design documents because it contained
errors and sometimes because documents were hard
to understand. The quality of releases was
dramatically improved after establishing a
collaborative work between designers and
developers by selecting several persons from each

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

side. Designers were surprised a lot by number of
ideas developers had and changed their opinion
about the developers’ department from the
“unqualified persons” to the “highly skilled”. The
quality improvement decreased immediately the
time of programming each version up to 43%. Each
version was also divided into several iterations of
different sizes: first iterations of the smaller size
(from included features point of view) and last of the
larger size. A lot of inaccurate features’ design and
implementation were resolved by applying this
method on early development stages decreasing the
overall time of versions development. A side effect
of applying the supporting design principle was the
better relationship between project team members
and healthier work environment.

6.2 Case 2: an IT department of an insurance

company
The second company to be described is a relatively
small insurance company’s IT department working
with variety of different software products designed
to meet requirements of different insurance areas.
The number of persons working in the department
was around 20. The team had to be flexible to meet
constantly changing and growing requirements of
other departments having quite small resources to
implement those. Results of applying the
methodology described in this article were much
better than we had expected. A lot of requirements
were reformulated in the design phase during the
collaboration of the persons formulating
requirements (usually it was a head of a department
that orders software) and designers. Frequent
releases allowed stabilizing direction of software
packages development. Quick design and
development enabled to involved programmers to
the formulating requirements and now they see
results of they work much earlier and number of
needed reprogramming decreased also. The quality
of releases before applying the methodology was
also very low since developers believed that they
had to reprogram each release anyway because of
uncertain/incorrect requirements.

7 Conclusion
The central idea of the supporting design is to use
design to verify requirements, design to get all
information and requirements from customers
including information on the requirements
uncertainty and so forth. This principle is extended
to other software development work cycle steps and

is defined as using each step to help doing correctly
the previous one. The idea is to make different
steps’ team members to collaborate, provide
feedback. This increases the quality of the product
decreasing the time needed to implement it. It is
done by building collaboration teams from persons
involved into the project on different steps, using
shared documents, establishing a reviewing process
for each step and using iterational development of
varying time intervals. Efficient feedback is one of
the methods to avoid certain communication gaps,
which are information loosing or deforming during
the communication of project team members. Other
methods are: shorter development cycles, simple and
clear practises and rules, regular well-prepared
meetings and the documents underwriting process.
The described method has proved its power by
applying in several software departments/companies
for the real-live projects.

References:
[1] B.W. Boehm, A spiral model of software
development and enhancement, Computer, Vol. 21,
No. 5, 1988, pp. 61-72
[2] K. Hadelich, H. Branigan, M. Pickering, M.
Crocker, Alignment in dialogue: Effects of visual
versus verbal-feedback, Proceedings of the 8th
Workshop on the Semantics and Pragmatics of
Dialogue, Catalog'04, 2004, pp. 35-40
[3] J.A. Hoffer, J.F. George, J.S. Valacich, Modern
system analyses and design, Addison Wesley, 1999
[4] D. Kumlander, Providing a correct software
design in an environment with some set of
restrictions in a communication between product
managers and designers, Proceedings of the
Fourteenth International Conference on Information
Systems Development: Pre-Conference, 2005, pp. 1-
11
[5] D. Kumlander, Software design by uncertain
requirements, Proceedings of the IASTED
International Conference on Software Engineering,
2006, pp. 224-2296.
[6] Z. Laszlo, T. Sulyan, MOFCOM: A tool for
model-based software development, Proceedings of
the IASTED International Conference on Software
Engineering, 2006, pp. 218-223
[7] R. Ludlow, F. Panton, The essence of effective
communication. Prentice Hall, 1995
[8] M. Rauterberg, O. Strohm, Work organisation
and software development, Annual Review of
Automatic Programming, Vol. 16, 1992, pp 121-128
[9] P.R. Reed, Developing applications with Visual
Basic and UML, Addison-Wesley, 1999

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp818-825)

