
Whole-Part Relationships in the Object-Relational Databases
ERKI EESSAAR

Department of Informatics
Tallinn University of Technology

Raja 15,12618 Tallinn
ESTONIA

Abstract: - Widely accepted view is that the relational data model is not powerful enough for preserving
semantics of the aggregation and composition relationships (whole-part relationships in general) in a relational
database. Data model that is specified in SQL:2003 standard and used by the Object-Relational Database
Management Systems (ORDBMSs) is believed to have better qualities in this regard. The Third Manifesto
provides thorough revision of the relational data model and can be considered to be the manifest about
ORDBMSs. We present designs for implementing whole-part relationships in a database that is maintained by
the system which takes all the principles of the Third Manifesto into account. We show that ORDBMSs that
use SQL language don't have all necessary means for implementing these designs and therefore still need
improvement. We also show that some of the problems are caused by the shortcomings of the SQL standard.

Key-Words: - Whole-part relationships, Data models, Database design, SQL, Data types, ORDBMS

1 Introduction
It is possible to specify aggregation and composition
relationships between entity types in the conceptual
data models. Their semantics is described for
example by Barbier et al. [1]. General name of this
kind of relationships is "whole-part relationship".
How to preserve their semantics in a database?

Names of the database objects are not sufficient
and suitable method in order to make semantics of
the data understandable to a Database Management
System (DBMS) [2]. But DBMS can enforce
structural and operational properties of the
relationships and objects which participate in these
relationships [3]. Properties of its underlying data
model (for example networked, relational etc.)
determine how well DBMS can preserve semantics
of the reality in a database.

There exists works (for example by Rahayu et al.
[4]) that describe how to map whole-part
relationships to the relational database tables and
constraints. But in general, relational data model that
is used in the current mainstream Relational DBMSs
(RDBMSSQL) is considered to be unsuitable in order
to preserve semantics of the complex relationships
(including whole-part) in a database. RDBMSSQL
uses the database language that conforms to
SQL:1992 or earlier standard. Object-Relational
DBMS (ORDBMSSQL) is considered to be better
than RDBMSSQL in this regard. ORDBMSSQL uses
the database language that conforms to SQL:1999 or
later standard.

The Third Manifesto [5] contains thorough
revision of the relational data model. According to

Date [6], the relational data model allows to extend
the sets of types and operators that a database
designer could use. It consists of a collection of
scalar types, relation type generator, facilities for
defining relation variables (relvars) of such types,
assignment operations for assigning relation values
(relations) to relvars and a collection of generic
relational operators for deriving relation values from
other relation values.

The Third Manifesto can be seen as a manifest
about the desired properties of the object-relational
DBMSs because many of its proposed features have
counterparts in SQL:1999 and SQL:2003 standard.
We reference to the system that follows the rules of
the Third Manifesto as ORDBMSTTM. The goals of
this article are:
1. To propose a set of designs for preserving

semantics of the whole-part relationships in an
ORDBMSTTM database. Our goal is not to give
detailed overview when to use each case but to
use these designs in the following evaluation.

2. To evaluate how well we can use these designs
in an ORDBMSSQL database. Results help to
find problems of ORDBMSSQLs and SQL
standard. Such study is important because it
gives guidelines how to improve currently
widely accepted language and systems.
The rest of the paper is organized as follows.

Section 2 gives an overview of the existing work
about implementing aggregation and composition
relationships in an ORDBMSSQL database. Section 3
presents design alternatives for implementing
whole-part relationships in an ORDBMSTTM

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1263-1268)

database. We are not aware of any existing study
about that. Section 4 describes problems that hamper
usage of these designs in an ORDBMSSQL database.
Section 5 summarizes this article.

2 Related Works
Some researchers try to extend an underlying data
model of an ORDBMSSQL with the relationships as
first class objects. For example, extension module
ORIENT [3] extends Informix DBMS by providing
CREATE RELATIONSHIP statement and means
for recording and using relationship data.

Second approach tries to add support to the
relationships by using existing facilities of the
DBMSs and their underlying data model. SQL:2003
defines type constructors ROW, ARRAY, REF and
MULTISET and permits creation of the user defined
structured types (UDTs) [7]. There are already a lot
of suggestions how to implement whole-part
relationships in an ORDBMSSQL database by using
constructed array type or table types (the latter is
interpretation of a multiset type constructor in
Oracle DBMS) [8], indexed clusters or table types
(features in Oracle DBMS) [9], constructed multiset
– or row type [10]. Data about the part instances can
be recorded in the columns that have complex data
types and therefore data about the whole instances
and their part instances can be recorded in one table
at the logical level. Usage of the clusters in Oracle
means that data about the whole and part instances
can be recorded together at the physical level, but at
the logical level they remain in the separate tables.

Our comment about the array types is that array
is a collection in which elements have a defined
order and the same element can be in the collection
more than once. Tuples in the body of a relation are
unordered and relations can't contain duplicated
tuples [5]. Therefore we can't use arrays in order to
implement relationships if we want to treat their
participants in a uniform way.

Proponents claim that the object-relational
features help to implement relationships in more
natural and semantics-preserving ways. But
researches have also identified problems of using
collections in the conceptual modeling [11] and in
the database schema. "A collection is a composite
value comprising zero or more elements, each a
value of some data type DT." [7, p. 45] Halpin and
Bloesch [11] note that collections make harder to
express constraints (which typically occur on
members, not collections) in a conceptual model.
But if it is difficult to use declarative language like
OCL in order to express constraints in a conceptual

model, then it is also difficult to express declarative
constraints and queries on collections in a database.
Smith and Smith [12] propose usage of the complex
types as domains for the attributes in relations in
order to record semantically important information
about an aggregation of objects in a relational
database. They also identify possible problems that
include restrictions to ways how user can access
data and duplication of data. The latter causes waist
of storage space as well as introduces problems of
possible inconsistency [12]. One solution could be
usage of pointers but "Pointers are objects which
have no real-world analog and serve to dramatically
increase the complexity of database interactions."
[12] Soutou [13] has also identified this problem and
writes: "Collections should model relationships
when there are no strong integrity constraints and
when there is a particular data access (via a separate
relation)." Collections offer little performance gain
according to experience of Halpin and Bloesch [11].
"Collections can provide better performance than a
standard relational database, but require more
complex queries for data retrieving." [12] Comment
to the last observation is that performance is an
implementation issue, not a model issue [6] and
shouldn't be a criterion for evaluating different data
models.

3 Whole-part Relationships in an
ORDBMSTTM database
Let's assume that a conceptual data model contains
two entity types Whole (represents the whole) and
Part (represents its part) that are associated with a
whole-part relationship. Whole has attributes a and
b. Part has attributes c and d. These attributes have
the type INT. Attributes a and c are unique
identifiers of the corresponding entity types.

Following section contains statements that are
written in Tutorial D relational language and have
mostly been tested using the prototypical
ORDBMSTTM Rel [14]. We haven't tested outer join
operator that is not yet fully supported by Rel.

Next we present types of the base relvars that
one could create based on the entity types Whole and
Part. These types are accompanied with the possible
names of relvars. Relvars in the designs 2 and 4 use
attributes that have a generated tuple type and
relation type, respectively. Attributes of these types
are created based on the entity type Part. The
attribute part in design 3 has a scalar type ST. Each
attribute of the entity type Part has a corresponding
component of a possible representation in this scalar
type.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1263-1268)

Design 1: Whole: RELATION {a INT, b INT}
Part : RELATION {c INT, d INT, a INT}

Design 2: Whole: RELATION {a INT, b INT, part
TUPLE {c INT, d INT}}

Design 3: Whole: RELATION {a INT, b INT, part
ST}

Design 4: Whole: RELATION {a INT, b INT, part
RELATION {c INT, d INT}}

Design 5: Whole: RELATION {a INT, b INT}
Part: RELATION {c INT, d INT}
PartOfWhole: RELATION {a INT, c INT}

The relvar Part has one foreign key (attribute a)

and relvar PartOfWhole has two foreign keys
(attributes a and c) in case of the designs 1 and 5,
respectively. For example, value of the foreign key
must match value of some candidate key of the
relvar Whole in case of the design 1.

All these designs require additional constraints
depending on the properties of the relationship that
they help to implement. These properties are
thoroughly described by Barbier et al. [1].

For example, following constraint ensures in
case of the design 4 that data about the same part
instance is not recorded more than once, across all
the values of the attribute part.

IS_EMPTY((SUMMARIZE (Whole UNGROUP
part) PER Whole UNGROUP part {c} ADD
COUNT AS cnt) WHERE cnt>1);

IS_EMPTY (<relation exp>) is the scalar
operator that evaluates to true if the body of the
relation denoted by <relation exp> contains no
tuples [5]. The idea of this constraint is to "unnest"
the attribute part and count how many times each
value of the attribute c participates in the result. The
set of c values that exist in the result more than once
must be empty. Attribute c is the unique identifier of
the entity type Part. We need similar constraint with
the UNWRAP operator in case of the design 2 that
uses a generated tuple type. In case of the design 3
we must declare that the attribute part is a candidate
key in order to ensure that data about the parts is not
recorded repeatedly within the value of one relvar.

Relationship ends have participation and
cardinality constraints which determine the possible
amount of instances that can be associated with an
instance in the context of a relationship. These
constraints can be presented as endpoints of a range.

The following constraint is usable in case of the
design 1 and specifies the amount of part instances
that can be associated with a whole instance. Left
join operator is needed in order to tackle the case
when whole instance has no associated part
instances. The set of tuples that represent unsuitable
cardinality range must be empty.

IS_EMPTY((SUMMARIZE Whole LEFT JOIN
Part PER Whole {a} ADD Count AS card) WHERE
NOT (constr));

Examples of the constraint constr are: card=1,
card>2; card>=1 AND card <=8.

3.1 Advantages and Disadvantages of the
Designs that Use Complex Types
Designs 1-5 can be divided into two groups. Each
entity type has a corresponding base relvar in a
database in case of the designs 1 and 5. Data about
the whole instance as well as its part instances is in
one tuple that is part of the value of one base revar
in case of the designs 2-4. Designs 2-4 use complex
data types in order to record data about the parts.

Possible advantage of the designs 2-4 is that data
about the instance and its associated instances can
be accessed by only accessing one relation. But in
case of the designs 1 and 5 we could use virtual
relvars for the same purpose. They provide even
more flexibility because user has more choices about
which relvar to use and how complex tuple to
retrieve. For example, in case of the design 5 we can
create virtual relvar with the following general
expression:

Whole LEFT JOIN PartOfWhole LEFT JOIN Part
GROUP {c, d} AS part;

This relvar has the following relation type:
RELATION {a INT, b INT, part RELATION {c
INT, d INT}}

Designs 2-4 don't necessarily reduce the amount
of relvas in a database because we may create virtual
relvars for accessing directly data about the parts.
For example, in case of design 4 we can create
relvars with the following relational expressions in
order to make access to the data of part and whole
instances more comfortable:
OnlyWhole: Whole {ALL BUT part};
Relation type is: RELATION {a INT, b INT}
OnlyPart: Whole UNGROUP part {a, c, d};
Relation type is: RELATION {a INT, c INT, d INT}

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1263-1268)

If we use such virtual relvars, when why to
create base relvars with the complex types in the
first place?

Designs 2-4 make more difficult to discover data
redundancy across different relvars. For example
one could create relvars with the following types:
Emp: RELATION{empno INT, ename CHAR, sal
INT} and Contract: RELATION{contractno INT,
creation_time, supervisor TUPLE {empno INT,
ename CHAR, sal INT}}

Values of both relvars can contain data about the
same employees. Orthogonal database principle
helps to discover data redundancy across different
relvars. Version of the principle that takes into
account usage of the complex data types (designs 2-
4) [15] is much more complicated than the original
principle [2] that doesn't take them into account.

Designs 2-4 make naive implementation of
versioning easier. If we change the tuple, then the
versioning system must preserve old version of it.
Problem is that even the smallest change causes
recording of the old version of the entire tuple and
therefore data about the whole instance as well as its
associated part instances. It causes data redundancy
and increases needs for the storage space.

Designs 2-4 can make easier to implement
concurrency control by database vendors, because it
is possible to use existing functionality of the
DBMSs. For example, if DBMS records data about
the parts and wholes together at the physical level
and uses locking, then only one tuple of a base
relvar has to be locked in order to lock data about
the entire object. This tuple may be recorded to one
data block that is part of a data file. But locking is
method of concurrency control that belongs to the
implementation level of the system.

If we want to keep logical distinction of model
and implementation, then "easy implementation"
shouldn't be argument that forms and reshapes the
model. If there are two separate relvars at the model
level, then at the physical level their data might by
recorded together. For example, Oracle [16] permits
creation of indexed- or hash clusters in order to
achieve just that. Date [6, p. 301] describes The
Principle of Interchangeability according to which
there must be no arbitrary and unnecessary
distinctions between the base and virtual relvars.
Therefore ORDBMSTTM should allow update virtual
relvars the same way as base relvars. Such update
propagates to the underlying base relvars and causes
locking of the relevant tuples that are part of their
values.

Conclusion of our analysis is that usage of the
complex data types doesn't have such clear

advantages that one could conclude after reading
existing research papers [3], [10].

4 Problems of ORDBMSSQL
Similarities and differences of the Third Manifesto
constructs and SQL constructs are for example
discussed by Date [6]. Researches like Pardede et al.
[10] have concentrated their attention to the
advantages of the new features of SQL that help to
implement whole-part relationships. This section
addresses some of the problems of SQL and
ORDBMSSQLs in this regard in order to show areas
that need improvement. Table 1 contains
comparison of the standards and some existing
systems (Oracle 10g and PostgreSQL 8.0) in terms
of some of the features that help to implement the
designs 1-5. List of the features is not complete due
to the space restrictions. Column "Designs" contains
references to the designs where such feature is
needed. We see that DBMSs implement only subsets
of the standard and use proprietary extensions. Last
row of Table 1 summarizes support to the features
by SQL standard and two ORDBMSSQL.

By default it is not possible to add key constraint
to the column that has a row type in PostgreSQL
database (row 4 in Table 1). One has first to create
an operator class and a b-tree support function that
compares two values that have a row type.

Examples of the constraints to the values of the
generated types (row 7 in Table 1): (a) an attribute
of the generated type must be mandatory; (b) a row
that is part of the value with the generated type must
satisfy some predicate; (c) a value with the multiset
type can't contain some value repeatedly; (d) values
with the generated type in one column of a table
can't contain some value repeatedly; (e) an attribute
of the generated type (row or multiset type) is also
foreign key attribute; (f) a value of the multiset has a
participation and cardinality constraint.

Constraint (c) will be automatically enforced in
case of the type constructor SET. It is not present in
SQL:2003. But we can create a view (virtual table)
where duplicate elements that are part of the
multiset value are removed by using the function
SET. In theory we could create declarative
constraints to the values of the multiset types by
using table- or database constraints that use for
example UNNEST operator or MEMBER,
SUBMULTISET or SET predicates, introduced in
SQL:2003 [7]. In practice we can't create these
constraints because of the limited support to the
declarative constraints in the ORDBMSSQLs (row 6
in Table 1).

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1263-1268)

Table 1. Some features that help to implement designs 1-5 in the DBMSSs

ID Third Manifesto [5] Designs SQL:2003 [7] Oracle 10g [16] PostgreSQL8.0
1 tuple type generator 2 row type constructor NO yes
2 relation type generator

(relation is a set)
4 multiset type

constructor
yes (table type –
supports the feature
but not the syntax)

NO

3 user defined scalar type 3 user defined structured
type (UDST)

yes NO

4 attribute with the complex
type can be a key

2, 3, 4 yes (no reference that it
can't be)

NO

default NO (needs
programming)

5 attribute with the complex
type can be mandatory

2, 3, 4 yes (no reference that it
can't be)

yes in case of
UDSTs. NO in case
of the table types

yes

CHECK constraint
with a subquery

NO - CHECK constraint can't contain a
subquery

6

complex declarative relvar
and database constraints

1, 2, 3, 4,
5

assertion object NO - not possible to create assertions
7 declarative constraints to the

values of the complex types
2, 3, 4 attribute constraints

and possible to declare
others by using for
example UNNEST
function.

attribute constraints
and relvar
constraint that
attribute of the
UDST is mandatory

attribute
constraints and
relvar constraints
to the values of
row types

8 it is possible to change value
of multiple relvars through a
virtual relvar (view) which
expression contains a join

1, 5 yes in case of one-to-
one join. NO in case of
one-to-many join - only
"many side" is
updatable [6, p. 322]

default NO
(yes if not-standardized instead-of
triggers (Oracle) or rules (PostgreSQL)
are programmed)

9 automatically generated
= and ≠ operators for
comparing values with a
complex type [5]

2, 3, 4 yes

yes default NO (there is
CREATE OPERATOR
statement and possible
to program it)

10 builtin GROUP operator 1, 5 COLLECT + SET
functions

CAST + SET
functions

NO

11 builtin UNGROUP operator 4 UNNEST function TABLE function NO
12 builtin WRAP operator 1, 5 NO NO NO
13 builtin UNWRAP operator 2 NO NO NO
14 IS_EMPTY builtin scalar

operator
1, 2, 3, 4,
5

NO NO NO

15 possibility to define new
scalar operators

1, 2, 3, 4,
5

NO yes yes

∑ supports fully / supports
partially / doesn't support

 8 / 3 / 4 3 / 5 / 7 3 / 4 / 8

The same problems are with the database

constraints that reference more than one table
(designs 1 and 5). It is possible to use triggers for
that. Problems of using triggers: (a) usage of a
proprietary imperative language; (b) creation of a
trigger doesn't cause automatic evaluation of the
existing data; (c) we need many triggers in order
react to all the events that can cause invalidation of
the constraint; (d) SQL standard doesn't permit to
defer execution of the trigger to the end of a
transaction.

Let's assume that we want to enforce the
structural constraint that the whole instance must all
the time be associated with between two and six part

instances. We need triggers that react to the
following events, in case of the design 1:
(a) Insertion of a new row to the table Whole.
(b) Insertion of a new row to the table Part.
(c) Modification of a part identifier in the table Part.
(d) Deletion of a row from the table Part.

For example, if a new row is added to the table
Whole, then we have to associate it with the data
about the part instance in the table Part. These
operations must be part of one transaction and a
DBMS must check the data at the end of the
transaction. If any of the checks fails, then
transaction should be rolled back. It can be
implemented in PostgreSQL by using not-

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1263-1268)

standardized constraint triggers. They allow to defer
execution of the trigger procedure to the end of
transaction.

In PostgreSQL all views need further
programming in order to be updatable (row 8 in
Table 1). In Oracle DML statement must affect only
one underlying table of the updatable join view.

Users of the current ORDBMSSQLs must often
manually create the additional database objects if
some object is created in a database. We believe that
system should create these objects automatically. Or
at least the system should allow to use the schema
triggers (like in Oracle) in order to allow to create
the generation program that is executed, when
database schema changes. SQL standard [7] doesn't
currently permit such triggers.

5 Conclusions
The Third Manifesto provides thorough revision of
the relational data model. We have presented
possible database designs for implementing whole-
part relationships in a database which is maintained
by a manifesto-compliant DBMS. These designs
help to preserve structural and operational properties
of the relationships in a database. Some of these
designs use complex data types. We conclude that
the data model that is described by the manifest
allows to implement all these designs. But designs
with the complex data types don't have a big
advantage compared to others because we still need
constraints and virtual relvars. We have also
investigated current SQL standard and two DBMSs
in order to find out how well they support the
proposed designs. We have found that SQL standard
and current systems have shortcomings and need to
be improved in order to allow to use all the designs.

References:
[1] Barbier F, Henderson-Sellers B, Le Parc-

Lacayrelle A, Bruel J, Formalization of the
Whole-Part Relationship in the Unified
Modeling Language, IEEE Trans. Softw. Eng.
Vol. 29, Part 5, 2003, pp. 459-470.

[2] Date CJ, McGoveran D, The Principle of
Orthogonal Design, Database Programming &
Design 7, No. 6 (June 1994).

[3] Zhang N, Ritter N, Härder T, Enriched
Relationship Processing in Object-Relational
Database Management Systems, In Proceedings
of the CODAS’01, 2001 pp. 53-62.

[4] Rahayu W, Chang E, Dillon TS, Implementation
of Object-Oriented Association Relationships in

Relational Databases, In Proceedings of the
IDEAS'1998, IEEE Computer Society, 1998, pp.
254-263.

[5] Date CJ, Darwen H, Foundation for Future
Database Systems: The Third Manifesto,
Addison-Wesley, 2000

[6] Date CJ, An Introduction to Database Systems,
Pearson/Addison Wesley, 2003

[7] Melton, J.: ISO/IEC 9075-2:2003 (E)
Information technology — Database languages
— SQL — Part 2: Foundation
(SQL/Foundation). August, 2003. Retrieved
December 26, 2004, from
http://www.wiscorp.com/SQLStandards.html

[8] Marcos E, Vela B, Cavero JM, Caceres P,
Aggregation and composition in object-relational
database design, In Proceedings of the
ADBIS'2001, Springer, 2001, pp. 195-209.

[9] Rahayu JW, Taniar D, Preserving Aggregation
in an Object-Relational DBMS. In Proceeding of
ADVIS 2002, Lecture Notes in Computer
Science, Springer-Verlag GmbH, Volume 2457 /
2002, pp. 1-10.

[10] Pardede E, Rahayu JW, Taniar D, Composition
in Object-Relational Database, Encyclopedia of
Information Science and Technology, IDEA
Publishing, 2005, pp. 488-494.

[11] Halpin T, Bloesch A, Modeling Collection in
UML and ORM. In Proc. 5'h IFlP WG8.1 Int.
Workshop on Evaluation of Modeling Method in
System Analysis and Design, 2000.

[12] Smith J, Smith D, Database abstractions:
aggregation, Communications of the ACM, Vol.
20, No. 6, 1977, pp. 405-413.

[13] Soutou C, Modeling relationships in object-
relational databases, Data and Knowledge
Engineering, Vol. 36, Issue 1, 2001, pp. 79-107.

[14] Voorish D, An Implementation of Date and
Darwen's "Tutorial D". Retr. Dec. 17, 2005, from
http://dbappbuilder.sourceforge.net/Rel.html

[15] Eessaar E, Guidelines about Usage of the
Complex Data Types in a Database, WSEAS
Transacions on Information Science and
Applications, Issue 4, Vol. 3, 2006, pp. 712-719.

[16] Oracle® Database SQL Reference 10g
Release 1 (10.1) Part Number B10759-01.
Oracle Corp., Retrieved October 4, 2005, from
http://download-west.oracle.com/docs/cd/
B14117_01/server.101/b10759/toc.htm

[17] PostgreSQL 8.0.3 Documentation. Retrieved
October 4, 2005, from
http://www.postgresql.org/docs/8.0/interactive/in
dex.html

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1263-1268)

