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Abstract: - Widely accepted view is that the relational data model is not powerful enough for preserving 
semantics of the aggregation and composition relationships (whole-part relationships in general) in a relational 
database. Data model that is specified in SQL:2003 standard and used by the Object-Relational Database 
Management Systems (ORDBMSs) is believed to have better qualities in this regard. The Third Manifesto 
provides thorough revision of the relational data model and can be considered to be the manifest about 
ORDBMSs. We present designs for implementing whole-part relationships in a database that is maintained by 
the system which takes all the principles of the Third Manifesto into account. We show that ORDBMSs that 
use SQL language don't have all necessary means for implementing these designs and therefore still need 
improvement. We also show that some of the problems are caused by the shortcomings of the SQL standard. 
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1   Introduction 
It is possible to specify aggregation and composition 
relationships between entity types in the conceptual 
data models. Their semantics is described for 
example by Barbier et al. [1]. General name of this 
kind of relationships is "whole-part relationship". 
How to preserve their semantics in a database? 

Names of the database objects are not sufficient 
and suitable method in order to make semantics of 
the data understandable to a Database Management 
System (DBMS) [2]. But DBMS can enforce 
structural and operational properties of the 
relationships and objects which participate in these 
relationships [3]. Properties of its underlying data 
model (for example networked, relational etc.) 
determine how well DBMS can preserve semantics 
of the reality in a database. 

There exists works (for example by Rahayu et al. 
[4]) that describe how to map whole-part 
relationships to the relational database tables and 
constraints. But in general, relational data model that 
is used in the current mainstream Relational DBMSs 
(RDBMSSQL) is considered to be unsuitable in order 
to preserve semantics of the complex relationships 
(including whole-part) in a database. RDBMSSQL 
uses the database language that conforms to 
SQL:1992 or earlier standard. Object-Relational 
DBMS (ORDBMSSQL) is considered to be better 
than RDBMSSQL in this regard. ORDBMSSQL uses 
the database language that conforms to SQL:1999 or 
later standard. 

The Third Manifesto [5] contains thorough 
revision of the relational data model. According to 

Date [6], the relational data model allows to extend 
the sets of types and operators that a database 
designer could use. It consists of a collection of 
scalar types, relation type generator, facilities for 
defining relation variables (relvars) of such types, 
assignment operations for assigning relation values 
(relations) to relvars and a collection of generic 
relational operators for deriving relation values from 
other relation values. 

The Third Manifesto can be seen as a manifest 
about the desired properties of the object-relational 
DBMSs because many of its proposed features have 
counterparts in SQL:1999 and SQL:2003 standard. 
We reference to the system that follows the rules of 
the Third Manifesto as ORDBMSTTM. The goals of 
this article are: 
1. To propose a set of designs for preserving 

semantics of the whole-part relationships in an 
ORDBMSTTM database. Our goal is not to give 
detailed overview when to use each case but to 
use these designs in the following evaluation. 

2. To evaluate how well we can use these designs 
in an ORDBMSSQL database. Results help to 
find problems of ORDBMSSQLs and SQL 
standard. Such study is important because it 
gives guidelines how to improve currently 
widely accepted language and systems. 
The rest of the paper is organized as follows. 

Section 2 gives an overview of the existing work 
about implementing aggregation and composition 
relationships in an ORDBMSSQL database. Section 3 
presents design alternatives for implementing 
whole-part relationships in an ORDBMSTTM 
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database. We are not aware of any existing study 
about that. Section 4 describes problems that hamper 
usage of these designs in an ORDBMSSQL database. 
Section 5 summarizes this article. 
 
 
2   Related Works 
Some researchers try to extend an underlying data 
model of an ORDBMSSQL with the relationships as 
first class objects. For example, extension module 
ORIENT [3] extends Informix DBMS by providing 
CREATE RELATIONSHIP statement and means 
for recording and using relationship data.  

Second approach tries to add support to the 
relationships by using existing facilities of the 
DBMSs and their underlying data model. SQL:2003 
defines type constructors ROW, ARRAY, REF and 
MULTISET and permits creation of the user defined 
structured types (UDTs) [7]. There are already a lot 
of suggestions how to implement whole-part 
relationships in an ORDBMSSQL database by using 
constructed array type or table types (the latter is 
interpretation of a multiset type constructor in 
Oracle DBMS) [8], indexed clusters or table types 
(features in Oracle DBMS) [9], constructed multiset 
– or row type [10]. Data about the part instances can 
be recorded in the columns that have complex data 
types and therefore data about the whole instances 
and their part instances can be recorded in one table 
at the logical level. Usage of the clusters in Oracle 
means that data about the whole and part instances 
can be recorded together at the physical level, but at 
the logical level they remain in the separate tables. 

Our comment about the array types is that array 
is a collection in which elements have a defined 
order and the same element can be in the collection 
more than once. Tuples in the body of a relation are 
unordered and relations can't contain duplicated 
tuples [5]. Therefore we can't use arrays in order to 
implement relationships if we want to treat their 
participants in a uniform way. 

Proponents claim that the object-relational 
features help to implement relationships in more 
natural and semantics-preserving ways. But 
researches have also identified problems of using 
collections in the conceptual modeling [11] and in 
the database schema. "A collection is a composite 
value comprising zero or more elements, each a 
value of some data type DT." [7, p. 45] Halpin and 
Bloesch [11] note that collections make harder to 
express constraints (which typically occur on 
members, not collections) in a conceptual model. 
But if it is difficult to use declarative language like 
OCL in order to express constraints in a conceptual 

model, then it is also difficult to express declarative 
constraints and queries on collections in a database. 
Smith and Smith [12] propose usage of the complex 
types as domains for the attributes in relations in 
order to record semantically important information 
about an aggregation of objects in a relational 
database. They also identify possible problems that 
include restrictions to ways how user can access 
data and duplication of data. The latter causes waist 
of storage space as well as introduces problems of 
possible inconsistency [12]. One solution could be 
usage of pointers but "Pointers are objects which 
have no real-world analog and serve to dramatically 
increase the complexity of database interactions." 
[12] Soutou [13] has also identified this problem and 
writes: "Collections should model relationships 
when there are no strong integrity constraints and 
when there is a particular data access (via a separate 
relation)." Collections offer little performance gain 
according to experience of Halpin and Bloesch [11]. 
"Collections can provide better performance than a 
standard relational database, but require more 
complex queries for data retrieving." [12] Comment 
to the last observation is that performance is an 
implementation issue, not a model issue [6] and 
shouldn't be a criterion for evaluating different data 
models. 
 
 
3 Whole-part Relationships in an 
ORDBMSTTM database 
Let's assume that a conceptual data model contains 
two entity types Whole (represents the whole) and 
Part (represents its part) that are associated with a 
whole-part relationship. Whole has attributes a and 
b. Part has attributes c and d. These attributes have 
the type INT. Attributes a and c are unique 
identifiers of the corresponding entity types.  

Following section contains statements that are 
written in Tutorial D relational language and have 
mostly been tested using the prototypical 
ORDBMSTTM Rel [14]. We haven't tested outer join 
operator that is not yet fully supported by Rel.  

Next we present types of the base relvars that 
one could create based on the entity types Whole and 
Part. These types are accompanied with the possible 
names of relvars. Relvars in the designs 2 and 4 use 
attributes that have a generated tuple type and 
relation type, respectively. Attributes of these types 
are created based on the entity type Part. The 
attribute part in design 3 has a scalar type ST. Each 
attribute of the entity type Part has a corresponding 
component of a possible representation in this scalar 
type. 
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Design 1: Whole: RELATION {a INT, b INT}  
Part : RELATION {c INT, d INT, a INT} 
 
Design 2: Whole: RELATION {a INT, b INT, part 
TUPLE {c INT, d INT}} 

 
Design 3: Whole: RELATION {a INT, b INT, part 
ST} 
 
Design 4: Whole: RELATION {a INT, b INT, part 
RELATION {c INT, d INT}} 
 
Design 5: Whole: RELATION {a INT, b INT}  
Part: RELATION {c INT, d INT} 
PartOfWhole: RELATION {a INT, c INT}  

 
The relvar Part has one foreign key (attribute a) 

and relvar PartOfWhole has two foreign keys 
(attributes a and c) in case of the designs 1 and 5, 
respectively. For example, value of the foreign key 
must match value of some candidate key of the 
relvar Whole in case of the design 1. 

All these designs require additional constraints 
depending on the properties of the relationship that 
they help to implement. These properties are 
thoroughly described by Barbier et al. [1]. 

For example, following constraint ensures in 
case of the design 4 that data about the same part 
instance is not recorded more than once, across all 
the values of the attribute part.  
 
IS_EMPTY((SUMMARIZE (Whole UNGROUP 
part) PER Whole UNGROUP part {c} ADD 
COUNT AS cnt) WHERE cnt>1); 
 

IS_EMPTY (<relation exp>) is the scalar 
operator that evaluates to true if the body of the 
relation denoted by <relation exp> contains no 
tuples [5]. The idea of this constraint is to "unnest" 
the attribute part and count how many times each 
value of the attribute c participates in the result. The 
set of c values that exist in the result more than once 
must be empty. Attribute c is the unique identifier of 
the entity type Part. We need similar constraint with 
the UNWRAP operator in case of the design 2 that 
uses a generated tuple type. In case of the design 3 
we must declare that the attribute part is a candidate 
key in order to ensure that data about the parts is not 
recorded repeatedly within the value of one relvar. 

Relationship ends have participation and 
cardinality constraints which determine the possible 
amount of instances that can be associated with an 
instance in the context of a relationship. These 
constraints can be presented as endpoints of a range.  

The following constraint is usable in case of the 
design 1 and specifies the amount of part instances 
that can be associated with a whole instance. Left 
join operator is needed in order to tackle the case 
when whole instance has no associated part 
instances. The set of tuples that represent unsuitable 
cardinality range must be empty.  
 
IS_EMPTY((SUMMARIZE Whole LEFT JOIN 
Part PER Whole {a} ADD Count AS card) WHERE 
NOT (constr)); 
 

Examples of the constraint constr are: card=1, 
card>2; card>=1 AND card <=8. 
 

 
3.1 Advantages and Disadvantages of the 
Designs that Use Complex Types 
Designs 1-5 can be divided into two groups. Each 
entity type has a corresponding base relvar in a 
database in case of the designs 1 and 5. Data about 
the whole instance as well as its part instances is in 
one tuple that is part of the value of one base revar 
in case of the designs 2-4. Designs 2-4 use complex 
data types in order to record data about the parts. 

Possible advantage of the designs 2-4 is that data 
about the instance and its associated instances can 
be accessed by only accessing one relation. But in 
case of the designs 1 and 5 we could use virtual 
relvars for the same purpose. They provide even 
more flexibility because user has more choices about 
which relvar to use and how complex tuple to 
retrieve. For example, in case of the design 5 we can 
create virtual relvar with the following general 
expression: 

 
Whole LEFT JOIN PartOfWhole LEFT JOIN Part 
GROUP {c, d} AS part; 
 

This relvar has the following relation type: 
RELATION {a INT, b INT, part RELATION {c 
INT, d INT}} 

Designs 2-4 don't necessarily reduce the amount 
of relvas in a database because we may create virtual 
relvars for accessing directly data about the parts. 
For example, in case of design 4 we can create 
relvars with the following relational expressions in 
order to make access to the data of part and whole 
instances more comfortable: 
OnlyWhole: Whole {ALL BUT part};  
Relation type is: RELATION {a INT, b INT} 
OnlyPart: Whole UNGROUP part {a, c, d}; 
Relation type is: RELATION {a INT, c INT, d INT} 
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If we use such virtual relvars, when why to 
create base relvars with the complex types in the 
first place? 

Designs 2-4 make more difficult to discover data 
redundancy across different relvars. For example 
one could create relvars with the following types: 
Emp: RELATION{empno INT, ename CHAR, sal 
INT} and Contract: RELATION{contractno INT, 
creation_time, supervisor TUPLE {empno INT, 
ename CHAR, sal INT}} 

Values of both relvars can contain data about the 
same employees. Orthogonal database principle 
helps to discover data redundancy across different 
relvars. Version of the principle that takes into 
account usage of the complex data types (designs 2-
4) [15] is much more complicated than the original 
principle [2] that doesn't take them into account. 

Designs 2-4 make naive implementation of 
versioning easier. If we change the tuple, then the 
versioning system must preserve old version of it. 
Problem is that even the smallest change causes 
recording of the old version of the entire tuple and 
therefore data about the whole instance as well as its 
associated part instances. It causes data redundancy 
and increases needs for the storage space.  

Designs 2-4 can make easier to implement 
concurrency control by database vendors, because it 
is possible to use existing functionality of the 
DBMSs. For example, if DBMS records data about 
the parts and wholes together at the physical level 
and uses locking, then only one tuple of a base 
relvar has to be locked in order to lock data about 
the entire object. This tuple may be recorded to one 
data block that is part of a data file. But locking is 
method of concurrency control that belongs to the 
implementation level of the system.  

If we want to keep logical distinction of model 
and implementation, then "easy implementation" 
shouldn't be argument that forms and reshapes the 
model. If there are two separate relvars at the model 
level, then at the physical level their data might by 
recorded together. For example, Oracle [16] permits 
creation of indexed- or hash clusters in order to 
achieve just that. Date [6, p. 301] describes The 
Principle of Interchangeability according to which 
there must be no arbitrary and unnecessary 
distinctions between the base and virtual relvars. 
Therefore ORDBMSTTM should allow update virtual 
relvars the same way as base relvars. Such update 
propagates to the underlying base relvars and causes 
locking of the relevant tuples that are part of their 
values. 

Conclusion of our analysis is that usage of the 
complex data types doesn't have such clear 

advantages that one could conclude after reading 
existing research papers [3], [10]. 

 
 

4 Problems of ORDBMSSQL 
Similarities and differences of the Third Manifesto 
constructs and SQL constructs are for example 
discussed by Date [6]. Researches like Pardede et al. 
[10] have concentrated their attention to the 
advantages of the new features of SQL that help to 
implement whole-part relationships. This section 
addresses some of the problems of SQL and 
ORDBMSSQLs in this regard in order to show areas 
that need improvement. Table 1 contains 
comparison of the standards and some existing 
systems (Oracle 10g and PostgreSQL 8.0) in terms 
of some of the features that help to implement the 
designs 1-5. List of the features is not complete due 
to the space restrictions. Column "Designs" contains 
references to the designs where such feature is 
needed. We see that DBMSs implement only subsets 
of the standard and use proprietary extensions. Last 
row of Table 1 summarizes support to the features 
by SQL standard and two ORDBMSSQL. 

By default it is not possible to add key constraint 
to the column that has a row type in PostgreSQL 
database (row 4 in Table 1). One has first to create 
an operator class and a b-tree support function that 
compares two values that have a row type.  

Examples of the constraints to the values of the 
generated types (row 7 in Table 1): (a) an attribute 
of the generated type must be mandatory; (b) a row 
that is part of the value with the generated type must 
satisfy some predicate; (c) a value with the multiset 
type can't contain some value repeatedly; (d) values 
with the generated type in one column of a table 
can't contain some value repeatedly; (e) an attribute 
of the generated type (row or multiset type) is also 
foreign key attribute; (f) a value of the multiset has a 
participation and cardinality constraint. 

Constraint (c) will be automatically enforced in 
case of the type constructor SET. It is not present in 
SQL:2003. But we can create a view (virtual table) 
where duplicate elements that are part of the 
multiset value are removed by using the function 
SET. In theory we could create declarative 
constraints to the values of the multiset types by 
using table- or database constraints that use  for 
example UNNEST operator or MEMBER, 
SUBMULTISET or SET predicates, introduced in 
SQL:2003 [7]. In practice we can't create these 
constraints because of the limited support to the 
declarative constraints in the ORDBMSSQLs (row 6 
in Table 1).    
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Table 1. Some features that help to implement designs 1-5 in the DBMSSs 

ID Third Manifesto [5] Designs SQL:2003 [7] Oracle 10g [16] PostgreSQL8.0 
1 tuple type generator 2 row type constructor NO yes 
2 relation type generator 

(relation is a set) 
4 multiset type 

constructor 
yes (table type – 
supports the feature 
but not the syntax) 

NO 

3 user defined scalar type 3 user defined structured 
type (UDST) 

yes NO 

4 attribute with the complex 
type can be a key 

2, 3, 4 yes (no reference that it 
can't be) 

NO 
 

default NO (needs 
programming) 

5 attribute with the complex 
type can be mandatory  

2, 3, 4 yes (no reference that it 
can't be) 

yes in case of 
UDSTs. NO in case 
of the table types 

yes 

CHECK constraint 
with a subquery 

NO - CHECK constraint can't contain a 
subquery 

6 
 

complex declarative relvar 
and database constraints 

1, 2, 3, 4, 
5 

assertion object NO - not possible to create assertions 
7 declarative constraints to the 

values of the complex types  
2, 3, 4 attribute constraints  

and possible to declare 
others by using for 
example UNNEST 
function. 

attribute constraints 
and relvar 
constraint that 
attribute of the 
UDST is mandatory 

attribute 
constraints and 
relvar constraints 
to the values of 
row types 

8 it is possible to change value 
of multiple relvars through a 
virtual relvar (view) which 
expression contains a join 

1, 5 yes in case of one-to-
one join. NO in case of 
one-to-many join - only 
"many side" is 
updatable [6, p. 322] 

default NO   
(yes if not-standardized instead-of 
triggers (Oracle) or rules (PostgreSQL) 
are programmed) 

9 automatically generated 
= and ≠ operators for 
comparing values with a 
complex type [5] 

2, 3, 4 yes 
 

yes default NO (there is 
CREATE OPERATOR 
statement and possible 
to program it) 

10 builtin GROUP operator  1, 5 COLLECT + SET 
functions 

CAST + SET 
functions 

NO 

11 builtin UNGROUP operator 4 UNNEST function TABLE function NO 
12 builtin WRAP operator 1, 5 NO NO NO 
13 builtin UNWRAP operator 2 NO NO NO 
14 IS_EMPTY builtin scalar 

operator 
1, 2, 3, 4, 
5 

NO NO NO 

15 possibility to define new 
scalar operators 

1, 2, 3, 4, 
5 

NO  yes yes 

∑ supports fully / supports 
partially / doesn't support 

 8 / 3 / 4 3 / 5 / 7 3 / 4 / 8 

 
The same problems are with the database 

constraints that reference more than one table 
(designs 1 and 5). It is possible to use triggers for 
that. Problems of using triggers: (a) usage of a 
proprietary imperative language; (b) creation of a 
trigger doesn't cause automatic evaluation of the 
existing data; (c) we need many triggers in order 
react to all the events that can cause invalidation of 
the constraint; (d) SQL standard doesn't permit to 
defer execution of the trigger to the end of a 
transaction. 

Let's assume that we want to enforce the 
structural constraint that the whole instance must all 
the time be associated with between two and six part 

instances. We need triggers that react to the 
following events, in case of the design 1:  
(a) Insertion of a new row to the table Whole.    
(b) Insertion of a new row to the table Part.  
(c) Modification of a part identifier in the table Part. 
(d) Deletion of a row from the table Part. 

For example, if a new row is added to the table 
Whole, then we have to associate it with the data 
about the part instance in the table Part. These 
operations must be part of one transaction and a 
DBMS must check the data at the end of the 
transaction. If any of the checks fails, then 
transaction should be rolled back. It can be 
implemented in PostgreSQL by using not-
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standardized constraint triggers. They allow to defer 
execution of the trigger procedure to the end of 
transaction.  

In PostgreSQL all views need further 
programming in order to be updatable (row 8 in 
Table 1). In Oracle DML statement must affect only 
one underlying table of the updatable join view. 

Users of the current ORDBMSSQLs must often 
manually create the additional database objects if 
some object is created in a database. We believe that 
system should create these objects automatically. Or 
at least the system should allow to use the schema 
triggers (like in Oracle) in order to allow to create 
the generation program that is executed, when 
database schema changes. SQL standard [7] doesn't 
currently permit such triggers. 

 
 

5   Conclusions 
The Third Manifesto provides thorough revision of 
the relational data model. We have presented 
possible database designs for implementing whole-
part relationships in a database which is maintained 
by a manifesto-compliant DBMS. These designs 
help to preserve structural and operational properties 
of the relationships in a database. Some of these 
designs use complex data types. We conclude that 
the data model that is described by the manifest 
allows to implement all these designs. But designs 
with the complex data types don't have a big 
advantage compared to others because we still need 
constraints and virtual relvars. We have also 
investigated current SQL standard and two DBMSs 
in order to find out how well they support the 
proposed designs. We have found that SQL standard 
and current systems have shortcomings and need to 
be improved in order to allow to use all the designs.  
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