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Abstract: - A new approach for fault detection and monitoring based on the parameters identification coupled to the
Principal Component Analysis (PCA) is proposed in this paper. The proposed Fault Detection and Monitoring consists
to apply the PCA method on the dynamic of the identified parameters. Conventional PCA uses the process inputs and
outputs as variables which are used in the computing procedure. Using the process parameters behaviour as variables in
the PCA computing procedure improve the detect ability by reducing the wrong faults generating by the noise effects.
Application on the rotary machines in skin pass machines of cold rolling will be developed in this work.
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1 Introduction measurements from sensors and manipulates them to
Identification techniques are important tools that give an generate features for classification. This includes
estimation of the process parameters evolutions. parameters identification coupled to PCA. Classifiers
According to the importance of the parameters then operate on the features to determine faults.

deviations, the monitoring system uses these aspects to
adapt the control system, to predict a fault or to
shutdown the global functionality if damage will be

occur. Many works based on the RLS methods have Measurements Features ) Decisions
. . . » Preprocessor Classifier >

been developed [1]-[5]. Process identification supposes a

persistent and stable input signal to obtain a significant

output and optimal convergence of the model parameters ~Fig. 17 Sequential steps im FDD

[6]-[7].

Fault detection and diagnosis is accomplished by
comparing performance determined from measurements
such as the model parameters with some expectation of

perfor'm.anc'e. If the deViatiS’n exceeds.a t}?re':sholc'i, then a fault diagnosis and symptoms generation. Fig.2 gives the
fault is 1nd1<.:ated.' Oft.en thls.proces.s is divided into tyvo principle of detection and classification using RLS
steps as depicted in Fig.1. It is considered pre-processing coupled to PCA.

and classification processes. The pre-processor takes

The FDD process can be made by modelling; features
are obtained from parameters identification using RLS
coupled to the PCA. An identification model is used to
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Fig.2: Fault detection and diagnosis based RLS and PCA

2 Modelling and identification using
RLS algorithm

The identification technique permits to find the process
parameter vector using the minimum least square error
between the process output and model output according
to the dynamical data. We consider a process with
dynamic output and exogenous input; this model is
called Autoregressive Moving Average with eXogenous
inputs (ARMAX). Each predicted output can be written
as:

A(G™)y(t) =B(@ Hu(t)+C(q " Hw(t) (1)
A@)=1+aq"'+a,q7)+..+a,9" )
B(q71)=b0+b1q71 "’bzcr2 +---+bmqim (3)
C(@)=c,+¢,q”" +¢,q7)+...+c,q " 4)

n, m and p is the differentiation order for the output y(t),
the control input u(t) and the exogenous input w(t)
respectively which are defined according to the process
dynamics. The objective is to find optimal values of the
process parameters using a least square algorithm. The
principle of identification is given in Fig.2.

From equation (1), the model output can be written as:

yh=X®" -1 (5)

With:

X(®) =[yt-1),yt-2),...,yt-n),ut-1),..,ut-m), (6)
,W(t=1),..,wt—p)]’

ot)=[a,.a,,....a,,b,,...b,,c,,C,,....c, 1" %)

The prediction error can be defined as:
e(t) = y,() - X(®' ot -1) (8)
The identification objective is to find the process
parameters that minimise the sum of errors g(t).
t

Min{d} = {3 ()} = )i

{3} {g()} (O optimar ©)
The following form gives the recursive estimation of
vector parameters:
Ot)=60(t-D+P)X({)e(t) (10)
where:

P(t):l{P(t—l)—

Pt-DX®X®) Pt-1)
At)

A(t) + X ()T P —1)X(t)

(11
The forgetting factor A(t) is usually computed according
to the rule,

A1)=A0A(t-1)+1-10 (12)
Recursive Least Square (RLS) estimation can be defined
as:

Stepl: Initialisation

-Define: f0eRmxl, PeRmxm , XeRmxl1,
[=Diag(mxm),
-y(0),u(0)...

-PO=l/a, a<<1

-00=[000....... 01T

-10=0.95

Step2: Recursive estimation

Input/output data acquisition

_X@O) =[y(t =1, y(t —2),..., yt —n),u(t = 1),...,u(t — m),wt = 1),...,wt — p)I’
_YO=X®"ot-1

-Compute ¢(t).Equation(8)

-Compute oM Equation(10)

-Compute A(t) Equation(12)

3 Fault detection using RLS and PCA

By projecting the data into a low-dimensional space that
accurately characterises the state of the system,
dimensionally reduction techniques can greatly simplify
and improve process monitoring procedures. PCA is
such a dimensionally reduction technique. It produces a
lower-dimensional representation in a way that
preserves the correlation structure between the process
variables, and is optimal in terms of capturing the data
variability. This technique is a linear method of system
reduction; it is optimal in term of the capturing of the
process variability which is important to detect the
process fault.

Given a training set of n observations and m process
variables stacked into a matrix X,

X, 1> Xpp e Xim
| Xty Xy e X (13)
X, =
Xiis Xis gennns X

We characterise the measured matrix X, by:

S :LXTX =VAV'
n-1 (14)

Where Ais a diagonal matrix:
A=32"% (15)

> E Rmxm contains the non-negative real singular
values of decreasing magnitude along its main diagonal
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o, 20, 2,..0,. >0 .
(Tree minmm = =) " and zero off diagonal elements.

The loading vectors are the orthogonal column vectors in
the matrix vV, and the variance of the training set
projected along the ith column of Vis equal to o

Solving equation (13) is equivalent to solve an
eingenvalue equals the square of the ith singular value
(i.e., A, = o'iz).

In order to optimally capture the variations of the data
while minimizing the effect of random noise corrupting
the PCA representation, the loading vectors
corresponding to the a largest singular values are
typically retained.

Selecting the columns of the loading matrix P €R™ to
correspond to the loading vectors associated with the
first a singular values, the projection of the observations
in X into lower-dimensional space are contained in the
score matrix,

T=XP (16)

and the projection of T back into m-dimensional
observation space,

X =TPT (17)

The difference between X and X is the residual matrix
E

E=X-X (18)

The residual matrix captures the variations in the
observation space spanned by the loading vectors
associated with the m-smallest singular values. The

subspaces spanned by X and X are called the score space
and residual space respectively.

Process variability is characterised by the dynamic of the
process parameters, PCA can be extended to analysis of
the model parameters estimated by the RLS algorithm. In
this way, the process parameters variability can be
defined by the analysis of the following observations

. X
matrix P

a(t),a(t =Dy a(t-n)
a,t—=1),a,t=2), a,(t-n) (19)

p
Cp(t=1),C (t =Dy c, (t—n)
T2 statistic can be used to detect faults for multivariate
process parameters data. Given an observation vector X
and assuming that A=2"Z is invertible, the T* statistic
can be calculated directly from the PCA representation
as:

T2 =x,VE'2) VX, (20)

X 1s defined as:

Xp = [Xilaxizﬂ """ Xim S i=lton (21)

By including in the matrix P the loading vectors
associated only with the a largest singular values, the T2
statistic for the lower-dimensional space can be
computed:

T?=x, PEP'x, (22)
An optimal T2 statistic can be computed using the
normal process parameters, fault can be detected when
the T2 statistic related to actual operating conditions
exceeds a fixed threshold.

Another indicator such Q statistic can be used. It is
defined as:

Q =r'r (23)
Where r is the residual vector, a projection of the
observation x into the residual space. Since Q statistic
does not suffer from an over sensitivity to inaccuracies
in the smaller singular values. The Q statistic, also
known as the squared prediction error. Computational
method is summarised in the following algorithm:

Step1: Estimation of the model parameters

Use the RLS algorithm given in section (2) to estimate
the process parameters 4(t)

Step2: Fault detection using PCA
e Define Tsh2 and Qs threshold

Define the observation matrix

at),a =1,

a,(t—-1),a,(t-2) (24)
)=

Co(t=1),C (t =Dy c,(t—n)

e Compute: g - X TX
-1 p p

e Compute V, the eigenvalues of S
e Compute P as reduced eigenvectors,
e P=V(,id-s); where id is the maximum

dimension of V and s is number of insignificant
eigenvalues that constitute appreciatively 3% of
the maximum eigenvalue.

T=Xp.P;

Compute the estimation of Xp ,

Xes=T*P';

Compute de residual,

E=Xp-Xes

Compute T2 statistic

T2 =Xes V Inv(D)*VT*XesT;

Compute Q Statistic

e Q=ET*E, Q<Qy

2 2
o If T"<T & there are no fault go to step 1 for
new identification process, else fault occur

o If QSQsh, there are no faults go to step 1 for
new identification process, else fault occur
e Continue
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4 Applications

4.1 Process description

Fig. 3 shows a part of skin pass process; the main
objective is to obtain a uniform pression on the metal
sheet surface. The metal sheet characterised by its
thickness is maintained between the upper and lower
rolls. Pression on the surface is obtained by a mechanism
which is controlled by forces applied by two motors.
Motors M1 and M2 must have a same rotary speeds in
order to generate an equal pressions in left and right

sides.

PR

Mletal cheet

Fig. 3: Principle of skin passes process

When a fault appears on the equipment of the rotary
control system of motor M1 or motor M2, the rotary
synchronism is then disturbed generating an important
defect on the left or on the right side of the metal sheet.
This cause also a shutdown of the process.

4.2 Speed control

Fig. 4 defines the principle of speed control of motors
M1 and M2. Only motor M1 is controlled in closed loop
using the feedback loop, motor M2 has the same
characteristics of motor M1, its control is obtained by a
simple connexion of the control law given by the feed
back.

Setpoint Il
Speed control Control W1 e l\rIntJI;II‘IfID del
T— 4| Feed back control
T2
Contral V2 | Ivlator Ivlodel | E——

%]

Fig. 4: Principle of length loop control

4.3 System Modelling

Fig. 5 defines the principle of data acquisition by
interfacing the analog control system and the process
computer by means of data acquisition package. Data has
been stored on the hard disk of process computer in real
time.

Y ————— €7 ]
! inpufs Outputs )

T
e

A Converter

1T

Process
Computer

L |

Fig. 5: Principle of data acquisition

Analog Process cofttrol

We consider in this part the identification of the model
defined by:

The input is the control signal of control card M1 named
“Control M1”, see Fig.4.

The output is the output signal of “Control M1~
Modelling process uses the stored input — output data
from normal operating conditions to find the dynamic
relationship between the input and output variables. RLS
identification algorithm is then used. We define the
dynamic interactions between the input and output by
the following equation.
y)=ayt-D+a,yt-2)+bu(t—1)+bu(t-2) (25)
ut) and yt) are the model input and output given in

Fig.6. According to the dynamic data of Y® and YO it
appears that we can consider a deterministic model
without random noise.

Using the RLS algorithm developed in section (II), the
results given in Fig.6¢ and Fig.6d have been obtained. It
has been wused the final value of O(t), with

(imO(t) — 6,,if .t — o) to calculate the model output.
O00= O(t=610), is then used to calculate the computed
output (Fig.6a).

In normal situation oM e DN, fis bounded in an
admissible domain.

Faulty situation is defined by the variation of O(t) in a

faulty domain Dr , This is caused by the model changes
including the structural and parameters variations
AB(t) = 6(t) -6,

1f ImAOM) =0 yhen  t—0: The fault is steady state

1f ImAO®) #0 ypen  t— 0. The fault is static

Static fault generates by the control system of the rotary
machine M1 or M2 induces a synchronism error. When
motor M1 and M2 have not a same rotary speed, the
pression applied on the right and left sides are not equal
, this generates an important defect that induce a
shutdown of the process.

Fig. 6a: Computed and real outputs
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Fig.6b: Input signal
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Fig.6¢c: Estimated parameters
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4.4 Application to Fault Detection and
Monitoring

700

Qualitative feature extraction is the abstraction of trend
information. Trend analysis and prediction are important
components of process monitoring and supervisory
control. Trend modelling can be used to explain the
various important events happening in the process, do
malfunction diagnosis and predict futures states. We
consider in this section a comparative study of fault
detection using normal PCA and PCA coupled to RLS
algorithm. Application has been made on the analysis of
faulty situation of the control system of the motor M2 in
Fig.4. The fault is characterised by a deviation of the
rotary speed dynamic between motor M1 and M2.
Motors M1 and M2 have the same mechanical and
electrical characteristics. Motor M1 is controlled in
closed loop, motor M2 is controlled in open loop by the
control card named “Control M2” in Fig.4. This
electronic card has a same input signal than that applied
to the speed control system of motor M1.

Although the motors M1 and M2 have a same input
signal and characteristics a difference in outputs appears
see Fig.7. This fault is generating by a defect on the
control module of the motor M2. Fault detection is
carried out by two approaches, one based on the
conventional PCA and the other is based on the PCA
coupled to RLS.

Application of the algorithm developed in section (II) to
the conventional PCA and PCA coupled to RLS
respectively, gives the results shown in Fig.8.

Fig. 8a: Outputs of control modules M1 and M2

Measurement signal [0-10v]

Faulty output signal of control
module M2

_10 Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200

Sampling number

Fig.8b: Input signal of control modules M1 and M2
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Fig.8a shows the faulty status defined y a divergence of
the signal output of the control module M2. Fault
analysis is obtained by two approaches as defined in
Fig.9. The first approach computes the Q statistic (Qx)
using the variability matrix X with input - output data,
the second is similar, it computes the Q statistic (Q,)
using the matrix parameters X, defined by equation (24).
Performances are given in Fig.9 and Fig.10. Q statistic of
Q, characterising the defect is more stable out of the
acceptable range. This is confirmed also confirmed by
the analysis of the eingenvalues of the matrix X, where
more of 80% of the variations are expressed by the two
last values against the three last using the matrix X
(Fig.10).

Fig. 9: Q statistic
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Fig. 10: Eigenvalues of X and X,
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5 Conclusion

We developed in this work an extension of conventional
PCA approach operating on the input output process
data to the PCA coupled to RLS. The obtained results
show that the extension of such approach improves
considerably the fault detection stability compared to the
conventional PCA method. Results have been confirmed
by the application on a real fault of rotary machine
control system in skin pass process.
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