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.  Abstract: - A new approach for fault detection and monitoring based on the parameters identification coupled to the 

Principal Component Analysis (PCA) is proposed in this paper. The proposed Fault Detection and Monitoring consists 
to apply the PCA method on the dynamic of the identified parameters. Conventional PCA uses the process inputs and 
outputs as variables which are used in the computing procedure. Using the process parameters behaviour as variables in 
the PCA computing procedure improve the detect ability by reducing the wrong faults generating by the noise effects. 
Application on the rotary machines in skin pass machines of cold rolling will be developed in this work. 
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1   Introduction 
Identification techniques are important tools that give an 
estimation of the process parameters evolutions. 
According to the importance of the parameters 
deviations, the monitoring system uses these aspects to 
adapt the control system, to predict a fault or to 
shutdown the global functionality if damage will be 
occur. Many works based on the RLS methods have 
been developed [1]-[5]. Process identification supposes a 
persistent and stable input signal to obtain a significant 
output and optimal convergence of the model parameters 
[6]-[7]. 
Fault detection and diagnosis is accomplished by 
comparing performance determined from measurements 
such as the model parameters with some expectation of 
performance. If the deviation exceeds a threshold, then a 
fault is indicated. Often this process is divided into two 
steps as depicted in Fig.1. It is considered pre-processing 
and classification processes. The pre-processor takes  
 

measurements from sensors and manipulates them to 
generate features for classification. This includes 
parameters identification coupled to PCA. Classifiers 
then operate on the features to determine faults.  

 
Fig.1: Sequential steps in FDD 

 
The FDD process can be made by modelling; features 
are obtained from parameters identification using RLS 
coupled to the PCA. An identification model is used to 
fault diagnosis and symptoms generation. Fig.2 gives the 
principle of detection and classification using RLS 
coupled to PCA. 
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Fig.2: Fault detection and diagnosis based RLS and PCA 
 
2   Modelling and identification using 
RLS algorithm 
The identification technique permits to find the process 
parameter vector using the minimum least square error 
between the process output and model output according 
to the dynamical data. We consider a process with 
dynamic output and exogenous input; this model is 
called Autoregressive Moving Average with eXogenous 
inputs (ARMAX). Each predicted output can be written 
as: 
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n, m and p is the differentiation order for the output y(t), 
the control input u(t) and the exogenous input w(t) 
respectively which are defined according to the process 
dynamics. The objective is to find optimal values of the 
process parameters using a least square algorithm. The 
principle of identification is given in Fig.2. 
From equation (1), the model output can be written as: 
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With: 
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The prediction error can be defined as: 

)1()()()( −−= ttXtyt T
p θε              (8) 

The identification objective is to find the process 
parameters that minimise the sum of errors ε(t). 
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The following form gives the recursive estimation of 
vector parameters: 
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The forgetting factor λ(t) is usually computed according 
to the rule, 
λ(t)=λ0λ(t-1)+1-λ0               (12) 
Recursive Least Square (RLS) estimation can be defined 
as: 
Step1: Initialisation 
-Define:  θ∈ℜmx1, P∈ℜmxm ,  X∈ℜmx1, 
I=Diag(mxm),  
-y(0),u(0)… 
-P0=I/α, α<<1 
-θ0=[0 0 0…….0]T 
-λ0=0.95 
Step2: Recursive estimation 
Input/output data acquisition  
-  TptwtwmtutuntytytytX )](),...,1(),(),...,1(),(),...,2(),1([)( −−−−−−−=

-  )1()()( −= ttXty T θ

-Compute ε(t).Equation(8) 
-Compute )(tθ  Equation(10) 
-Compute λ(t) Equation(12) 
 
3   Fault detection using RLS and PCA 
By projecting the data into a low-dimensional space that 
accurately characterises the state of the system, 
dimensionally reduction techniques can greatly simplify 
and improve process monitoring procedures. PCA is 
such a dimensionally reduction technique. It produces a 
lower-dimensional representation in a way that 
preserves the correlation structure between the process 
variables, and is optimal in terms of capturing the data 
variability. This technique is a linear method of system 
reduction; it is optimal in term of the capturing of the 
process variability which is important to detect the 
process fault. 
Given a training set of n observations and m process 
variables stacked into a matrix X, 
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We characterise the measured matrix Xp by: 
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Where Λ is a diagonal matrix: 
 

ΣΣ=Λ T                    (15) 
 
Σ Ξ Rmxm contains the non-negative real singular 
values of decreasing magnitude along its main diagonal 
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( 0,.... ),min(21 ≥≥≥ nmσσσ ), and zero off diagonal elements. 
The loading vectors are the orthogonal column vectors in 
the matrix V , and the variance of the training set 

projected along the ith column of V is equal to . 
Solving equation (13) is equivalent to solve an 
eingenvalue equals the square of the ith singular value 
(i.e., ). 

2
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In order to optimally capture the variations of the data 
while minimizing the effect of random noise corrupting 
the PCA representation, the loading vectors 
corresponding to the a largest singular values are 
typically retained.  
Selecting the columns of the loading matrix mxaRP ∈  to 
correspond to the loading vectors associated with the 
first a singular values, the projection of the observations 
in X into lower-dimensional space are contained in the 
score matrix,  

XPT =                     (16) 
and the projection of T back into m-dimensional 
observation space, 

TTPX =
^

                    (17) 

The difference between  and  is the residual matrix 
E 

X
^
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The residual matrix captures the variations in the 
observation space spanned by the loading vectors 
associated with the m-smallest singular values. The 

subspaces spanned by 
^
X and X are called the score space 

and residual space respectively.  
Process variability is characterised by the dynamic of the 
process parameters, PCA can be extended to analysis of 
the model parameters estimated by the RLS algorithm. In 
this way, the process parameters variability can be 
defined by the analysis of the following observations 
matrix  pX
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T2 statistic can be used to detect faults for multivariate 
process parameters data. Given an observation vector x 
and assuming that  is invertible, the TΣΣ=Λ T 2  statistic 
can be calculated directly from the PCA representation 
as: 
 

p
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x is defined as: 
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By including in the matrix P the loading vectors 
associated only with the a largest singular values, the T2 
statistic for the lower-dimensional space can be 
computed: 

p
TT

p xPPxT Σ=2                 (22) 
An optimal T2 statistic can be computed using the 
normal process parameters, fault can be detected when 
the T2 statistic related to actual operating conditions 
exceeds a fixed threshold.  
Another indicator such Q statistic can be used. It is 
defined as: 

rrQ T=                     (23) 
Where r is the residual vector, a projection of the 
observation x into the residual space. Since Q statistic 
does not suffer from an over sensitivity to inaccuracies 
in the smaller singular values. The Q statistic, also 
known as the squared prediction error. Computational 
method is summarised in the following algorithm: 
Step1: Estimation of the model parameters 
Use the RLS algorithm given in section (2) to estimate 
the process parameters )(tθ  
Step2: Fault detection using PCA 

• Define  and  threshold 2
shT shQ

• Define the observation matrix  
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• Compute: 
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• Compute V,  the eigenvalues of S 
• Compute P as reduced eigenvectors, 
• P=V(:,id-s); where id is the maximum 

dimension of V and s is number of insignificant 
eigenvalues that constitute appreciatively 3% of 
the maximum eigenvalue. 

• T=Xp.P;    
• Compute the estimation of Xp , 
• Xes=T*P'; 
• Compute de residual, 
• E=Xp-Xes 
• Compute T2 statistic 
• T2 =Xes V Inv(D)*VT*XesT;  
• Compute Q Statistic 
• Q=ET*E, shQQ ≤  
• If , there are no fault go to step 1 for 

new identification process, else fault occur  
shTT 22 ≤

• If shQQ ≤ , there are no faults go to step 1 for 
new identification process, else fault occur 

• Continue 
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4   Applications 
4.1   Process description 
Fig. 3 shows a part of skin pass process; the main 
objective is to obtain a uniform pression on the metal 
sheet surface. The metal sheet characterised by its 
thickness is maintained between the upper and lower 
rolls. Pression on the surface is obtained by a mechanism 
which is controlled by forces applied by two motors. 
Motors M1 and M2 must have a same rotary speeds in 
order to generate an equal pressions in left and right 
sides.  

 
Fig. 3: Principle of skin passes process 

 
When a fault appears on the equipment of the rotary 
control system of motor M1 or motor M2, the rotary 
synchronism is then disturbed generating an important 
defect on the left or on the right side of the metal sheet. 
This cause also a shutdown of the process. 
  
4.2   Speed control  
Fig. 4 defines the principle of speed control of motors 
M1 and M2. Only motor M1 is controlled in closed loop 
using the feedback loop, motor M2 has the same 
characteristics of motor M1, its control is obtained by a 
simple connexion of the control law given by the feed 
back. 

 
Fig. 4: Principle of length loop control 

 
4.3   System Modelling  
Fig. 5 defines the principle of data acquisition by 
interfacing the analog control system and the process 
computer by means of data acquisition package. Data has 
been stored on the hard disk of process computer in real 
time.  

 
Fig. 5: Principle of data acquisition 

 
We consider in this part the identification of the model 
defined by: 
The input is the control signal of control card M1 named 
“Control M1”, see Fig.4.  
The output is the output signal of “Control M1”  
Modelling process uses the stored input – output data 
from normal operating conditions to find the dynamic 
relationship between the input and output variables. RLS 
identification algorithm is then used. We define the 
dynamic interactions between the input and output by 
the following equation. 

)2()1()2()1()( 2121 −+−+−+−= tubtubtyatyaty     (25) 
)(tu  and  are the model input and output given in 

Fig.6. According to the dynamic data of  and , it 
appears that we can consider a deterministic model 
without random noise. 

)(ty
)(tu )(ty

Using the RLS algorithm developed in section (II), the 
results given in Fig.6c and Fig.6d have been obtained. It 
has been used the final value of Ө(t), with 

∞〉→→〈 tift ,,)(lim 0θθ  to calculate the model output. 
Ө0= Ө(t=610), is then used to calculate the computed 
output (Fig.6a). 

In normal situation NDt ∈)(θ , θ is bounded in an 
admissible domain. 
Faulty situation is defined by the variation of Ө(t) in a 
faulty domain , This is caused by the model changes 
including the structural and parameters variations 

FD

0)()( θθθ −=∆ tt .  

If 0)(lim →∆ tθ  when : The fault is steady state 0→t

If 0)(lim ≠∆ tθ  when : The fault is static 0→t
Static fault generates by the control system of the rotary 
machine M1 or M2 induces a synchronism error. When 
motor M1 and M2 have not a same rotary speed, the 
pression applied on the right and left sides are not equal 
, this generates an important defect that induce a 
shutdown of the process. 
 Fig. 6a: Computed and real outputs  
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4.4   Application t
Monitoring 

Qualitative feature extraction is the abstraction of trend 
information. Trend analysis and prediction are important 
components of process monitoring and supervisory 
control. Trend modelling can be used to explain the 
various important events happening in the process, do 
malfunction diagnosis and predict futures states. We 
consider in this section a comparative study of fault 
detection using normal PCA and PCA coupled to RLS 
algorithm. Application has been made on the analysis of 
faulty situation of the control system of the motor M2 in 
Fig.4. The fault is characterised by a deviation of the 
rotary speed dynamic between motor M1 and M2. 
Motors M1 and M2 have the same mechanical and 
electrical characteristics. Motor M1 is controlled in 
closed loop, motor M2 is controlled in open loop by the 
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control card named “Control M2” in Fig.4. This 
electronic card has a same input signal than that applied 
to the speed control system of motor M1.  

ig.6b: Input signal 

Although the motors M1 and M2 have a same input 
signal and characteristics a difference in outputs appears 
see Fig.7. This fault is generating by a defect on the 
control module of the motor M2. Fault detection is 
carried out by two approaches, one based on the 
conventional PCA and the other is based on the PCA 
coupled to RLS. 
Application of the algorithm developed in section (II) to 
the conventional PCA and PCA coupled to RLS 
respectively, gives the results shown in Fig.8. 
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Fig. 8a: Outputs of control modules M1 and M2 

Sampling time 

M
ea

su
re

m
en

t s
ig

na
l [

0-
10

v]
 

: Estimated parameters 

 
 
 
 
 
 
 
 
 

Sampling number 

              a1 

            a2
            b1
            b2

Faulty output signal of control 
module M2 

Sampling number 

Fig.8b: Input signal of control modules M1 and M2
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Fig.8a shows the faulty status defined y a divergence of 
the signal output of the control module M2. Fault 
analysis is obtained by two approaches as defined in 
Fig.9. The first approach computes the Q statistic (Qx) 
using the variability matrix X with input - output data, 
the second is similar, it computes the Q statistic (Qp) 
using the matrix parameters Xp defined by equation (24). 
Performances are given in Fig.9 and Fig.10. Q statistic of 
Qp characterising the defect is more stable out of the 
acceptable range. This is confirmed also confirmed by 
the analysis of the eingenvalues of the matrix Xp where 
more of 80% of the variations are expressed by the two 
last values against the three last using the matrix X 
(Fig.10). 
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5   Conclusion 
We developed in this work an extension of conventional 
PCA approach operating on the input output process 
data to the PCA coupled to RLS. The obtained results 
show that the extension of such approach improves 
considerably the fault detection stability compared to the 
conventional PCA method. Results have been confirmed 
by the application on a real fault of rotary machine 
control system in skin pass process.  
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