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Abstract: - In this paper, we propose a method to solve the Nonlinear Multicommodity Network Flow (NMNF) 
Problem.  We have combined this method with a projected-Jacobi (PJ) method and a duality based method 
possessing decomposition effects.  With the decomposition, our method can be parallel processed and is 
computationally efficient.  We have tested our method on several examples of NMNF problem and obtained 
some successful results.  
Key-Words: - NMNF problem, projected-Jacobi method, duality based method, decomposition. 
 
1   Introduction 
There are many large practical systems formed by the 
network-like mesh-interconnected buses or nodes 
through tier-lines.  For example, the Network system 
is formed by a number of nodes interconnected with 
each other through tier-lines. 

Nonlinear multicommodity network flow 
(NMNF) problem is computationally difficult 
because of their large dimension and nonlinearity and 
has important applications to traffic assignment 
[1]-[4] and data network routing [5]-[8].  Such 
problems are typical convex programming problems, 
and the NMNF problem solution techniques mostly 
originate from nonlinear programming algorithm that 
are especially to exploit the linear constraint structure 
with various approaches [9]-[17].  Recently, an 
efficient method developed in [18], Dual Projected 
Pseudo Quasi-Newton method takes advantage of the 
special structure of inequality constraints and 
network sparsity.  The method in [18] abbreviated 
DPPQN have achieved a dramatic speed-up ratio 
over a typical method for NMNF problem.  
Considering the trend about the number of 
commodities in the networks is increasing in NMNF 
problem.  In this paper, we use the framework of the 
DPPQN method and propose a parallel algorithm to 
solve the NMNF with many commodities problem.  
Furthermore, we implement the proposed method in 
two real Processor-Network systems and 
demonstrate the computational efficiency through the 
simulation results. 

The paper is organized in the following manner.  
Section 2 states the problem of the NMNF problem.  
Section 3 presents the method combining the 

projected-Jacobi and the parallel dual-type methods 
for solving NMNF problems.  The simulation and 
conclusion are given in Section 4. 
 
 
2   Statement of the NMNF Problem 
We first introduce the notation for the K-commodity 
NMNF problem in the following: 
k : denotes the index of the commodity of the  

network system. 
K : denotes the total number of the commodity of the  

network system. 
i : denotes the index of the node of the network  

system. 
I : denotes the total number of the node of the  

network system. 

jiLv : denotes the set of the node  which connected  
with node , from node  to node 

j
i i j . 

ihLr : denotes the set of node  which connected with  h
node , from node  to node . i h i

k
ijf : denotes the flow over the branch  with the  ),( ji

destination node (commodity) . k
k

ir : denotes the flow requirement at node i  with the  
destination node . k
),( ji : denotes the branch from node i  to node . j
)( ih, : denotes the branch from node  to node i . h

B : denotes the set of all network branches in the  
network system. 

|| ⋅ : denotes the cardinality of the set．. 
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function in . )(⋅
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: represents the sum of all the  

commodity of all the branch costs of the  
network system. 

)(⋅Δ : the increment of the vector . )(⋅
:)( T⋅  denotes the transpose of the vector . )(⋅

diag[□]: a diagonal matrix formed by the diagonal  
terms of the matrix [□]. 

:)(2 tFkf k
ij

∇  denotes the Hessian of  with respect kF

to  evaluated at . k
ijf )(tf k

ij

:
)(

2

2

k
ij

k

f
tF

∂

∂
 denotes the diagonal entry corresponding  

to the branch  of the matrix . ),( ji )(2 tFkf k
ij

∇

:)(tFkf k
ij

∇  denotes the gradient of  with respect  kF

to  evaluated at . k
ijf )(tf k

ij

:)(
k

ij

k

f
tF

∂
∂

 denotes the component corresponding to the  

branch  of the vector . ),( ji )(tFkf k
ij

∇

:f  denotes the vector of all  
KkBjitf k

ij ,...,2,1,),(),( =∈∀  and  

,...,,...,,,,...,,[ 2
||

2
2

2
1

1
||

1
2

1
1 BB fffffff =   

TK
B

KK fff ],...,, ||21 . 

:)(tfΔ  denotes the vector of  
all  and KkBjitf k

ij ,...,2,1,),(),( =∈∀Δ

,...,,,,...,,[ 2
2

2
1

1
||

1
2

1
1 ffffff B ΔΔΔΔΔ=Δ  

TK
B

KK
B ffff ],...,,,..., ||21
2
|| ΔΔΔΔ  

QP: quadratic programming.  
:)( fΩ  denotes the set of  satisfying the  f

inequality constraints of flow. 
:, wt  iteration index. 
:,βα  step size. 
:, 21 εε  predetermined positive real values.  

:)(λφ  the dual function of constrained QP  

sub-problem. 
:)(λφ u  the dual function of unconstrained QP  

sub-problem. 
:λ  denotes the vector of the Lagrange multipliers,  

KkIik
i ,...,2,1,,...,2,1, ==λ  and  

TK
I

KK
II ],...,,,...,,...,,,,...,,[ 21
22

2
2.

1
11

2
1
1 λλλλλλλλλλ = . 
:||)(|| ∞⋅  denotes the infinite norm of the vector )(⋅ . 

 
The NMNF with K-commodity problem can be 

stated as follows: 

∑ ∑∑
= = ∈

=
K

k

I

i Lj

k
ijk

k
ij

ji

fFfF
1 1

)()(min
r

     (1a) 

subject to 
 

KkIirff
ji ihLj Lh

k
i

k
hi

k
ij ,...,2,1,,...,2,1,0 ===−−∑ ∑

∈ ∈r r

      (1b) 
 

KkBjif k
ij ,...,2,1,),(,0 =∈∀≤ .  (1c) 

 
The object of NMNF with many commodities 

problem is to find an optimal flow solution that 
satisfies the flow balance constraints (1b), and the 
nonnegative constraints (1c), while minimizing the 
objective function (1a). 
 
 
3   Solution Method 
3.1  The Projected-Jacobi (PJ) Method 
The projected-Jacobi method uses the following 
iterations to solve the NMNF problem given in 
Eqs.(1a)-(1c), 
 

)()(+)(=)1+( * tfttftf Δα ,  (2) 
 

where  denotes the vector of all 
, at iteration t  and 

the 

)(tf
KkBjitf k

ij ,...,2,1,),(),( =∈∀
1|| ×⋅KB  column vector  is described in the 

following:  
f

TK
B

KK
BB ffffffffff ],..,,,..,,..,,,,..,,[ ||21
2
||

2
2

2
1

1
||

1
2

1
1=

; 0)( >tα  is a step-size determined by the 
centralized Amijo rule [19], and  denotes the 

vector of all  the 

)(* tfΔ

,,...,2,1,),(,
*

KkBjif k
ij =∈∀Δ

1|| ×⋅KB  column increment vector  is of the 
following form,  

fΔ
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,...,,...,,,,...,,[ 2
||

2
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2
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1
||

1
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1
1 BB fffffff ΔΔΔΔΔΔ=Δ .

, that solves the following 
quadratic programming (QP) sub-problems:  

TK
B

KK fff ],...,, ||21 ΔΔΔ

 

)()()(
2
1[min

1

tftDtf ijij
T

ij
Lj

I

if
ji

ij

ΔΔ∑∑
∈=

Δ
r

 

)]()( tftF ij
T

fij
Δ∇+    (3a) 

 
subject to 
 

∑ ∑
∈ ∈

Δ+−Δ+
ji ihLj Lh

k
hi

k
hi

k
ij

k
ij tftftftf

r r

))()(())()((   

,0=− k
ir   (3b) KkIi ,...,2,1,,...,2,1 ==

 
KkBjitftf k

ij
k

ij ,...,2,1,),(),()(0 =∈∀Δ+≤ ,(3c) 
 
where  is a BjitDij ∈∀ ),(),( KBKB ⋅×⋅  block 

diagonal matrix and ItFdiagtD
ijfij δ

2
1)]([)( 2 +∇= , 

and 

,  and  denote the Hessian and the 

gradient of 

])(,...,)(,)([)( 21 21
T

Kf
T

f
T

f
T

f tFtFtFtF K
ijijijij

∇∇∇=∇

F
ijf

2∇ T
f

F
ij

∇

F  with respect to  for the branch 

,∀ , respectively, and  denotes 

the vector of all , =1,2,…,K.  

And 

ijf
),( ji Bj ∈i ),( )(tf ijΔ

Bjitf k
ij ∈∀Δ ),(,)( k

δ  is a small real number but large enough to 
make  positive definite. ijD

Let  be the block diagonal term of the block 

diagonal matrix , and 

k
ijD

ijD
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(0

)(0
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tD
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      (4) 
 
where  is a )(tD k

ij BB ×  diagonal matrix 

corresponding to commodity , and  = 

+

k )(tD k
ij

)]([ 2 tFdiag kf k
ij

∇ Iδ
2
1

, and the diagonal entry 

corresponding to the branch ( ) is ji, 2

)(2

k
ij

k

f
tF

∂

∂
 

.   From Eqs.(1a)-(1c) and since  is a block 
diagonal matrix, we can rewrite Eqs.(3a)-(3c) as  

ijD

 

ijfΔ
min ∑∑∑

= = ∈

ΔΔ
K

k

I

i Lj

k
ij

k
ij

Tk
ij

ji

tftDtf
1 1

)()()(
2
1[

r

 

)]()( tftF k
ij

T
kf k

ij
Δ∇+    (5a)  

subject to 
 
  ∑ ∑

∈ ∈

Δ+−Δ+
ji ihLj Lh

k
hi

k
hi

k
ij

k
ij tftftftf

r r

))()(())()((  

KkIir k
i ,...,2,1,,...,2,10 ===−  (5b) 

 
)()(0 tftf k

ij
k

ij Δ+≤  , Bji ∈∀ ),( , =1,2,…,k K  
      (5c) 

 
 

3.2  The Duality based Parallel Method  
Let Ω  denote the set of  satisfying the 

inequality constraints of flows, that is, 
fΔ

Ω∈Δ+ ff  
represents ff Δ+  satisfying (3c).  Therefore, we 
see that if ff Δ+ ∈ Ω , then Ω∈Δ+ ff α  for 

,α∀  0< 1≤α .  Hence, we can rewrite (5a)-(5c) as  
 

∑∑∑
= = ∈

Ω∈Δ+
ΔΔ

K

k

I

i

k
ij

k
ij

Tk
ij

Ljtftf
tftDtf

ji1 1))()((
)()()(

2
1[min

r

 

)]()( tftF k
ij

T
kf k

ij
Δ∇+   (6a)  

 
subject to 
 

∑ ∑
∈ ∈

=Δ−Δ+
ji ihLj Lh

k
hi

k
ij

k
i tftftb

r r

,0)()()(  

KkIi ,...,2,1,,...,2,1 ==   (6b) 
 
where  
 

∑ ∑
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−−=
ji ihLj Lh

k
i

k
hi

k
ij

k
i rtftftb

r r

)()()( , 

KkIi ,...,2,1,,...,2,1 == , 
 

,),(),()(0{ Bjitftff k
ij

k
ij

k
ij ∈∀Δ+≤Δ≡Ω   

},...,2,1 Kk = . 
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The dual problem of the QP sub-problems 
Eqs.(6a),(6b) is  
 

)(max λφ
λ

     (7) 

 
where the dual function, 
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k
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k
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ij
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r

λ

λφ

 (8) 

is a function of λ , which is the vector of Lagrange 
multipliers , and 

.  
It should be noticed that for the sake of clarity, we 
ignore the index t  from the vector of the variable 

 in (8). 

KkIik
i ,...,2,1,,...,2,1, ==λ

TK
I

KK
II ],...,,,...,,...,,,,...,,[ 21
22

2
2.

1
11

2
1
1 λλλλλλλλλλ =

)(tfΔ
We define  be the vector of equality constraint 

function on the LHS of (6b).  Therefore, 

k
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k
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k
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k
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KkIi ,...,2,1,,...,2,1 == , and the 
1×⋅KI  column vector g can be described in the 

following: 
 TK

I
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II gggggggggg ],...,,,...,,...,,,,...,,[ 21
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2
2
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11
2

1
1=

 
Since 
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B
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BB ffffffffff ],..,,,..,,..,,,,..,,[ 21
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2
2

1
11

2
1

1=
 and 

,...,,...,,,,...,,[ 22
2

2
1

11
2

1
1 BB fffffff ΔΔΔΔΔΔ=Δ  

TK
B

KK fff ],...,, 21 ΔΔΔ ,  

we see that ∇ g , the gradient of g  with respect to 
 is an fΔ KBKI ⋅ ⋅×  block diagonal matrix 

shown in the following: 
 

⎥
⎥
⎥
⎥
⎥
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⎢
⎢
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  (9) 

Each  is an kg∇ BI ×  matrix corresponding to 

commodity  in the network system.  k
 

The duality based method uses the following 
iteration to solve (7): 
 

Kkwwww kkk ,...,2,1),()()()1( =Δ+=+ λβλλ  
  (10) 

 
where  denotes the iteration index, w 0)( >wβ  is a 
step-size determined  according to the centralized 
Armijo’s rule [19] and .  
Furthermore,    

Tk
I

kkk ],...,,[ 21 λλλλ ΔΔΔ=Δ

,...,,...,,,,...,,[ 22
2

2
1

11
2

1
1 II λλλλλλλ ΔΔΔΔΔΔ=Δ  

TK
I

KK ],...,, 21 λλλ ΔΔΔ  
can be obtained by solving the following linear 
equations:  
 

0))(()())((2 =∇+Δ∇ wwwu λφλλφ   (11) 
 

where the column vector ))(( wλφ∇  with dimension 
1×⋅KI  is the gradient of )(λφ  with respect to λ  

at )(wλ , and ))(( wλφ∇  is also the vector of all 
))(( wk

i
λφ

λ
∇ , =1,2,…,I, =1,2,…,i k K , and the 

matrix  with dimension ))((2 wu λφ∇ KIKI ⋅×⋅  
denotes the Hessian of the unconstrained dual 
function )(λφ . 

From the Duality theorem [19], we see that the 
))(( wλφ∇  and  can be computed by ))((2 wu λφ∇

 

∑ ∑
∈ ∈

Δ−Δ+=∇
ji ih

k
i

Lj Lh

k
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k
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k
i fftbw

r r

ˆˆ)())((λφ
λ , 

=1,2,…,I, k =1,2,…,i K , (12) 
 

Tu gtgDw ∇−∇=∇ −12 )())((λφ .  (13) 
 

The  in (12) is the optimal solution of the 
constrained minimization problem on the RHS of (8).  

f̂Δ

 
To compute ))w((λφ

λk
i

∇ , we need to solve the 

minimization problem on the RHS of Eq.(8) to obtain 
.   k

ijf̂Δ
This can be achieved by the following two-stage 

algorithm: 
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Stage 1: Solve the following unconstrained 
minimization problem:  
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By using a gradient method [20] to obtain an 

approximately solution for the entry of branch  

in each commodity , and each 

),( ji
k k

ijf~Δ  can be 
computed in parallel described in the following: 
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Stage 2: Project ,,...,2,1,),(,~ KkBjif k
ij =∈∀Δ  the 

solution obtained from Stage 1, onto Ω .  The 
resulting projection is .  It is the solution 
of the minimization problem on RHS of Eq.(8).  Due 
to the decomposition effect, the resulting projection 

, can be parallel 
computed by the following analytical formula,  

))((ˆ wf λΔ
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      (18) 
 
It should be noticed that the computations in Stage 2 
are the comparison check shown in Eg.(18).   
 
3.3  The Complete method for solving 
Nonlinear Multicommodity Network Flow 
problem 

Our method for solving Nonlinear 
Multicommodity Network Flow problem is using PJ 
method Eq.(2) where  is the solution of the 
QP sub-problem Eqs.(3a)-(3c).  The proposed 
parallel dual-type method uses Eq.(10) to solve 
Eq.(7), the dual problem of QP sub-problem, instead 

of solving Eqs.(3a)-(3c) directly.  The  in 
Eq.(10) is obtained from solving Eq.(14) using linear 
programming technique.  And can be parallel 
processed.  The ,

)(* tfΔ

)(wkλΔ

k
ijf̂Δ KkBji ,...,2,1,),( =∈∀  is 

needed to set up ))(( wk λφ
λ

∇  and can be computed 
using the two-stage method.  Consequently, the 
duality based  method converges to optimal solution 

 and the solution  of Eq.(8) with  is ∗λ f̂Δ ∗= λλ
fΔ , the solution of Eqs.(3a)-(3c).   

 
 
4   Simulation and Conclusion 
We have developed a parallel algorithm for solving 
NMNF problem.  The method combines with the 
projected-Jacobi method and a duality based  method 
possessing commodity decomposition effects.  With 
the decomposition, the proposed method can be 
parallel processed.  We have tested our method on 
several examples of NMNF problem and obtained 
some successful results. 

 
 

References: 
[1] S. C. Dafermos and F. T. Sparrow, “ The traffic 

assignment problem for a general network, ” J. 
Res. Nat. Bur. Stand. B, 1969, pp. 395-412. 

[2] T. Leventhal, G. Nemhauser, and L. Trotter, Jr., 
“ A column generation algorithm for optional 
traffic assignment, ” Trans. Sci., Vol.7, No.2 
1973, pp. 168-176. 

[3] S.Nguyen, “ An algorithm for the traffic assign- 
ment problem, ” Trans. Sci., Vol.8, No.3, 1974,  
pp. 203-216. 

[4] R. B. Potts and R. M. O liver, Flows in transpor- 
tation network. Academic Preaa, New York, 
London, 1972. 

[5] D. G. Cantor and M. Gerla, “ Optimal routing in a 
packet switched computer network, ” IEEE  
Trans. Comput. Vol.C23, No.10, 1974, pp.  
1062-1068. 

[6] H. Frank and W. Chou, “Routing in computer 
networks, ” Networks, Vol.1, No.2, 1971, pp.  
99-112. 

[7] L. Fratta, M. Gerla, and L. Kleinrock, “ The flow 
deviation method: An approach to store-and- 
forward communication network design, ” 
Networks Vol.3, No.2, 1973, pp. 97-113. 

[8] B. Yaged, “ Minimum cost routing for static 
network models, ” Networks Vol.1, No.2, 1971, 
pp. 139-172. 

[9] S. C. Dafermos, “ An extended traffic assignment 
model with applications to two-way traffic, ” 

5 

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp330-335)



Trans. Sci.Vol.5 , 1971, pp. 336-389. 
[10] B. Golden, “ A minimum-cost multicommodity 

network flow problem concerning imports and 
exports, ” Networks, Vol.5, No.4, 1975, pp.  
331-356. 

[11] A. M. Geoffrion and G. W.Graves, “ Multi- 
commodity distribution system design by 
benders decomposition, ” Mgmt. Sci. Vol.20, No. 
5, 1974, pp. 822-884. 

[12] M. A. Hall and E. L. Peterson, “ Highway traffic 
equilibrium analyzed via geometric program- 
ming, ” Traffic Equilibrium Methods (M. A. 
Florian, Ed. ). Springer-Verlag, New York, 1976, 
pp. 53-105. 

[13] J. L. Kennington and R. V. Helgason, Algori- 
thms for network programming. Wiley, New 
York, 1980. 

[14] R. W. Klessing, “ An algorithm for nonlinear 
multicommodity flow problems, ” Networks, 
Vol.4, No. 4, 1974, pp. 343-355. 

[15] L. J. Leblanc, E. K. Morlok, and W. P. Pierskalla, 
“ An accurate and efficient approach to equili- 
brium traffic assignment on congested networks. 
Interactive graphics & trans. systems planning, ” 
Trans. Res. Rec,. Vol.491, 1974, pp. 12-33. 

[16] M. Schwartz and C. K. Cheung, The gradient 
projection algorithm for multiple routing in 
message-switched networks. Preprin , 1975. 

[17] J. G. Wardrop, “ Some theoretical aspects of 
road traffic research, ” Proc. Inst. Civ. Eng. 
Vol.2, No.1, 1952, pp. 325-378. 

[18] S.-Y. Lin and C.-H. Lin, “ A Computational 
efficient method for nonlinear multicommodity 
network problems, ” Networks, Vol.29, 1997, 
pp. 255-244. 

[19] D. Luenberger, Linear and nonlinear program- 
ming, 2nd ed. Addison-Wesley Reading, 
MA,1984. 

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and 
Distributed Computation:  Numerical Methods. 
Prentice-Hall, London. 1989.   

 

6 

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp330-335)


