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Abstract: - In this paper some adaptive nonlinear multivariable techniques used in the control of robotic 
manipulators are presented. The nonlinear control law and state feedback are used in achieving a linear input-
output behavior for the controlled system. For the design of the adaptive nonlinear control, the exact feedback 
input-output linearization and the method of gradient are used. The nonlinear control law achieves also 
decoupling. Computer simulations are included to demonstrate some theoretical aspects and the performances 
of these controllers for a typical structure of robotic manipulator. 
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1   Introduction 
The control of the robotic manipulators is an 
important area for research, development, and 
manufacturing. If we consider some approximations 
on the robot dynamical model we can do a linear 
analysis of the manipulator control problem. 
Without these approximations we have a nonlinear 
model. The field of nonlinear control theory is large 
(a lot of methods of control): the computed torque 
method, the robust control method, the adaptive 
control method [1], the force control method etc. 
(see [4], [6], [7]). The control requires the 
knowledge of a mathematical model and of some 
sort of intelligence to act on the model. The model 
of a robot is obtained from the basic physical laws 
governing its movement. There are many methods to 
obtain the dynamical model (see [5], [7], [9]): 
Lagrange method, Euler method, d'Alembert 
method, Kane method etc. Here is used the 
Lagrange method to obtain the dynamical model for 
a robot which works in cylindrical coordinates. 

In the last years, significant advances have been 
made in the development of ideas such as feedback 
linearizing and input-output decoupling techniques 
([3], [6]). In this paper, by using the feedback 
linearizing techniques, a multivariable nonlinear 
control law is obtained for a robotic manipulator - 
widely discussed in [2] for both monovariable and 
multivariable cases. In many practical situations, 
some robotic manipulator parameters are unknown; 
therefore an adaptive control strategy is required in 
order to maintain the performances of the controlled 
system. In this paper, an adaptive control law based 

on reference model for the exactly linearized model 
is also designed. 

The paper is organized as follows: in Section 2, 
some basics of the exact linearization theory are 
presented. In Section 3, mathematical models of 
robotic manipulators are analysed, while in Section 
4 the adaptive nonlinear controllers are developed 
and Section 5 include computer simulation. Finally, 
Section 6 collects the conclusions. 
 
 
2   The Statement of the Exact  
     Linearization Problem 
A multivariable nonlinear system can be described 
in state space by equations of the following kind: 
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in which f(x), g1(x), g2(x),...., gm(x) are smooth 
vector fields. 

The problem of exact linearization via feedback 
and diffeomorphism consists in transforming a 
nonlinear system (1) into a linear one using a state 
feedback and a coordinate transformation of the 
systems state. The exact feedback linearization 
theory is widely presented by [6]. Next, some basic 
results of this theory are presented. These results are 
applied in Section 4, where adaptive nonlinear 
control laws are developed for robotic manipulators. 

Consider the Lie derivative of a function 
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Definition. A multivariable nonlinear system of 
the form (1) has a relative degree } ,...,{ 1 mrr  at a 

point 0x  if: 
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for all mj ≤≤1 , for all mi ≤≤1 for all 1−< irk , 

and for x  in a neighborhood of 0x , 
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is nonsingular at x = x0.  
Theorem. Let be the nonlinear system of the form 

(1). Suppose the matrix )( 0xg  has rank m . Then, 
the State Space Exact Linearization Problem is 
solvable if and only if: 
1) for each 10 −≤≤ ni , the distribution iG  has 
constant dimension near x0; 
2) the distribution 1−nG  has dimension n ; 
3) for each 20 −≤≤ ni , the distribution iG  is 
involutive. 
 
 
3 Mathematical Model of Robotic 
     Manipulators 
We consider the robot manipulator with three axes 
described in Fig. 1, which is driven by a d.c. motor 
controlled in current. For this robot arm, which 
works in cylindrical coordinates, the kinetic energy 
is: 
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The potential energy is: 
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Lagrange’s equations of motion for a conservative 
system are given by: 
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where q is an n-vector of generalized coordinates 
iq , τ  is an n-vector of generalized forces iτ , and 

the Lagrangian (L) is the difference between the 
kinetic (K) and potential (P) energies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Structure of a robotic manipulator 

Now, we shall use Lagrange’s equation to derive 
the general robot arm dynamics. The system is 
characterized by a set of three first order differential 
equations: 

( ) 131331
2
33321 2 τ=++++ qqqmqqmIII &&&&   

( ) ( )gmmqmm 322232 +−=+ τ&&     (8) 

 3
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where I1, I2, I3 represent the moments of inertia of 
the solids with respect to the axis z; m2, m3 are the 
solids’ masses; 321 ,, τττ  are the generalized forces. 
 
(i). For the beginning we consider q2 = 0 and we 
note 321 IIII ++= . The state equations are the 
following: 
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For the system (9), we consider as output 
variables the generalized coordinates 1q and 3q : 
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In this situation, the mathematical model is 
multivariable and it has two inputs and two outputs.  
 
(ii). If 02 ≠q , the state equations are the following:  
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In this situation, the mathematical model is 
multivariable and it has three inputs and three 
outputs. 
 
 
4   Adaptive Nonlinear Control Laws 
The mathematical model in the multivariable case (i) 
is of the form (9), but where the inputs are the 
generalized coordinates 1τ  and 3τ . In this situation, 
we consider as output variables the generalized 
coordinates 1q  and 3q : 
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For this system we have decoupling matrix 
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and the nonlinearities canceling vector is  
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Using relations (15) and (16), the input-output 
system can be written in the form: 
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An easy calculus shows that the matrix for 
mathematical model of the robot is nonsingular and 
the (vector) relative degree is {r1, r2} = {2, 2}. 
Because the decoupling matrix (15) is not singular, 
it is possible to design a nonlinear input: 
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such that the obtained linear system has the transfer 
matrix: 
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Imposing on the linear system an additional 
feedback of the form: 
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then, the obtained system has a linear input-output 
behavior, described by the following diagonal 
transfer function matrix  
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In the multivariable case (ii), for the system (12), we 
consider as output variables the generalized 
coordinates q1, q2 and q3: 
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and the nonlinearities canceling vector: 
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Using relations (23) and (24), the input-output 
system can be written in the form: 
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An easy calculus shows that the matrix for 
mathematical model of the robot is nonsingular and 
the (vector) relative degree is {r1, r2, r3} = {2, 2, 2}. 
Because the decoupling matrix (23) is not 
singular, it is possible to design a nonlinear 
input: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

+−

+−

⋅=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

33
2

22
2

11
2

1

3

2

1

)(
)(
)(

)(
vxhL
vxhL
vxhL

xA
u
u
u

f

f

f

           (26) 

such that the obtained linear system has the transfer 
matrix: 
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Imposing on the linear system an additional 
feedback of the form: 
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the obtained decoupled closed-loop system has a 
desired behavior. 

The implementation of the obtained nonlinear 
control laws (i.e. (18), (20) for the first case and 
(26), (28) for the second case) is hampered if some 
of robot parameters are unknown or variable in time 
(slowly). In order to overcome this disadvantage, an 
adaptive control law, based on reference model 
approach, can be designed. For the synthesis of the 
adaptive algorithm, the method of the gradient is 
used, choosing the following criterion ([8]): 
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where ( ) ( ) ( )txtxte m−=  and matrix H > 0 is the 
solution of the Lyapunov equation 
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where G is a symmetric positive definite matrix and 
Am is reference model matrix. The adaptive 
algorithm will be: 
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The adaptation law for the controller parameters 
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For the mathematical models (9), (18), (20) and 
(32), respectively (12), (26), (28) and (32) of 
controlled robotic manipulators, we choose as a 
reference model a transfer function of order two 
associated with the Integral of Time – Multiplied 
Absolute Value of Error (ITAE) criterion.  
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5   Simulation Results 
Two simulation cases were considered in order to 
test the performances of the proposed adaptive 
nonlinear controllers. 
i) The simulation was done for the model equations 
(9), (10), the nonlinear control law (18), (20) and the 
adaptation law (32). The performance of the 
controlled system is presented in Fig. 2–Fig.6. The 
evolution of angular position is presented in Fig. 2 
and the position in Fig. 3. The reference model 
output versus the real output and the control input 
are presented only for the first input-output channel, 
in Fig. 4 and Fig. 5 respectively. In Fig. 6 the plane 
trajectory of the robot arm is presented. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Angular position – case (i) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Evolution of the position – case (i) 
 
(ii) The simulation was done for the model 
equations (12), (13), the nonlinear control law (26), 
(28) and the adaptation law (32). The performance 
of the controlled system is presented in Fig. 7 – Fig. 
9. Fig. 7 shows the time evolution of the generalized 
coordinate q1 – the angle - versus reference. In Fig. 
8 the reference model output versus the real output 

is depicted for the first channel. Finally, Fig. 9 
shows the control input u1. 

We studied in both simulation cases the 
convergence of the controller parameters ci for the 
situations when one or more parameters of the 
process are varying in time. It was resulted a 
quickly convergence of these parameters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Reference model output versus the real output 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Control input 1 for the case (i) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Plane trajectory – case (i) 
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The both simulation cases show that the obtained 
performance is good, we have very small 
overshoots, the settling times are small and the 
evolutions of the commands are acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Evolution of the angle – case (ii) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Reference model output versus the real output 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Control action u1 – case (ii) 

 

6 Concluding Remarks 
In this paper an adaptive nonlinear linearizing 
control technique for robotic manipulators was 
presented. The design of the nonlinear control law 
uses the exact feedback input-output linearization. 
The models of robotic manipulators are studied in 
order to implement of the control laws. Using 
multivariable modelling and control design, exact 
linearizing controllers are obtained. An adaptive 
control law, based on reference model approach is 
designed in order to overcome the disadvantage of 
parametric uncertainties. For the synthesis of the 
adaptive algorithm, the method of the gradient is 
used. Computer simulation is performed in order to 
test and validate the proposed adaptive nonlinear 
controllers. From the simulation results it can be 
seen a good behavior of the systems. 
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