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Abstract: - The problem of the robust control of an electrohydraulic system is considered. First, the nonlinear 
model of an electrohydraulic system is deduced and then a series of linearized models are obtained. In order to 
obtain a low order compensator, a reduced order model is used in the controller design. The approximation 
error of the initial model by this reduced order model is treated as an uncertainty. The two-degree of freedom 
compensator technique is used. Some simulation results are presented. 
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1   Introduction 
Most of the real dynamic systems lead to nonlinear 
mathematical models. The study of all possible 
evolutions of these systems represents a very 
complicated problem. The simple integration of 
evolution equations using the numeric methods is 
not the right solution thanks to the dependence of 
the movement's character to the parameters and to 
the initial conditions. In order to benefit of the 
understanding of the phenomena that participate and 
correlate in a dynamic process - by interpretations 
which are offered only by analytic studies of the 
mathematical model - where developed a series of 
methods of linearization of nonlinear models. 
     The electrohydraulic system that is analyzed in 
this paper consists of a two-stage flow control 
servovalve and a double-ended actuator. The 
servovalve has a symmetrical double-nozzle and a 
torque-motor driven flapper for the first stage, and a 
closed center fourway sliding spool for the second 
stage. 
     The organization of the paper is as follows. The 
nonlinear model is presented and is linearized 
around its equilibrium state, resulting in the 
cascaded servovalve linear model and actuator linear 
model, respectively. Various features of the derived 
model are discussed, and this improved model is 
compared with existing linear models. Robust 
controllers are synthesized based on the derived 
models and, also, for reduced order models. 
     The simulation results demonstrate that the 
control system designed based on the reduced order 
models assure stability robustness and 
corresponding performance. 
 
 

2 Mathematical Model of the 
     Electrohydraulic System 
The electrohydraulic system shown in Fig. 1 
consists of a two-stage flow control servovalve and 
a double-ended actuator. The servovalve has a 
symmetrical double-nozzle and a torque-motor 
driven flapper for the first stage, and a closed center 
four-way sliding spool for the second stage. 
     The differential equations governing the 
dynamical behavior of this electrohydraulic system 
are given in the following subsections. 
   
    
2.1   Torque Motor Dynamics      
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θ⋅= lu  
J - moment of inertia of torque motor; 

21 ccc AAA ==  - cross-sectional area of orifice; 

1K  - torque-motor gain; 

2K  - electromagnetic rotational stiffness; 

aK  - rotational stiffness of flexure tube; 
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Fig. 1. Structure of the electrohydraulic system 
 
 

vB  - damping coefficient of torque-motor; 
θ  - angular position of armature/flapper; 

21, cc pp  - presures on left and right side of spool, 
respectively; 
l - distance from nozzle to the pivot point of the 
flexure tube; 

0u - maximum flapper displacement; 
i  - input current to torque-motor; 
u  - spool position; 

dc  - nozzle flow coefficient; 
d  - diameter of nozzle. 

  
    
2.2   Flapper-Nozzle Stage Dynamics      
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where: 
 

E  - bulk-modulus of fluid; 
0c  - orifice flow coefficient; 

sp  - supply pressure; 
S  - area of spool valve; 

sx  - spool position ( ss vx =&  spool velocity); 
ρ  - density of fluid; 

sxSVV ⋅+= 101                  (7) 

sxSVV ⋅−= 202                  (8) 

2010 VV =  - enclosed volume on each side of 
spool when 0=sx . 
 

 
2.3   Spool Dynamics 
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where: 
 

m  - spool mass; 
sB  - damping coefficient of spool; 

sK  - stiffness each direct feedback spring at the 
spool. 
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2.4   Continuity in Cylinder Chambers 
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where: 
 

ba pp ,  - pressure in left and right cylinder 
chambers, respectively; 
 

ySVyVySVyV bbbaaa −=+= 00 )( ; )(          (13) 
 

boa VV =0  - enclosed volumes on each side of 
actuator when 0=y ; 
y  - actuator position; 

ba SS =  - effective areas of double-ended piston; 
yv &=  - actuator velocity; 

a  - area gradient (flow area/spool displacement); 
dcc  - orifice flow coefficient. 

  
 
2.5   Piston Dynamics 
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where: 
 

M  - piston mass; 
aB  - damping coefficient of actuator; 

F  - disturbance force input on actuator. 
 
 

 2.6   The Linearized Model 
The derivation of the linearized model with respect 
to an equilibrium state from the above nonlinear 
model is tedious but straigh forward. 
     The equilibrum states are derived for zero inputs, 

0 , 0 == Fi : 0 , 0 ,0 ; 0 ; 0 ===== vyxu sθ . 
We obtain 
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     From design reasons the following condition it is 
imposed 
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so, we obtain 

22010
s

cc
p

pp ==  

 
     Linearizing the mathematic model of 
electrohydraulic system around the equilibrum 
position, we obtain the linearised mathematical 
model. 
     First, the equations (5) and (6) are linearized and 
the Laplace transform is applied: 
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Then, the equations (1)...(4) are linearized, and the 
Laplace transform is applied: 
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Now, the equation (9) is linearized, and the Laplace 
transform is applied: 
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     From equations of continuity (10) - (13), after 
linearization and applying the Laplace transform, 
one obtain: 
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Finally, the equation (14) is linearized and the 
Laplace transform is applied: 
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The linearized actuator model can be obtain as 
follows: 
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and the linearized model of the two-stage servovalve 
it is of the form: 
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So, the transfer function of the resulting model of 
the electrohydraulic system is: 
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sYsG =  (of order 8). 

 
 
3   Two-Degree of Freedom Controller 
Now, consider the overall control system 
represented by the configuration of Fig. 1, with a 
two-degree of freedom controller (R, S, T). The 
design objective is to specify the two-degree of 
freedom controller to achieve the following two 
aims: 
     a) The controller robustly stabilizes the nominal 
model )(0 sG , with robust stability-degree 
assignment, against the neglected dynamics )(sG∆ , 
by specifying R(s) and S(s). 
     b) The transfer function from r to y is as close to 
the desired model M(s) as possible via an adequately 
chosen T(s). 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The overall control system 
 

3.1  Robust Stability Degree Assignment 
We consider o stable function, with minimum phase, 

)(sα , so that: 
 

0)(,)()( ≥∀<−∆ ωωαβω jjG              (25) 
 
     In order to robustly stabilize the nominal model 

)()( 00 β−= sGsG  against the unmodeled dynamics 
G∆ that satisfies (25), we use a coprime 

factorization of 0G  [3]: 
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     If the following compensators are considered 
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where Q(s) is any stable proper rational function, the 
system from w to y, in the left moved plane, is 
internally stable. The sufficient condition for robust 
stabilization of 0G (s) against G∆ (s) that satisfies 
(25), can be obtained as follows: 
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Now, using the inverse transformation ( β+→ ss ), 

)()( β+= sSsS  and )()( β+= sRsR  stabilize the 
nominal model )(0 sG with robust stability degree 
β .  
 
 
3.2. Optimal Model Matching 
Based on rise time, overshoot, settling time, and so 
on, can be selected a desired model M(s). Consider 
the performance of nominal system, i.e., for 

0)( =∆ sG . For optimal model matching the 
following integration error 
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must be minimized.  
     Here, the following two cases are analyzed: 
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   1) The nominal transfer function )(0 sG  is 
minimum phase. Then, 
 

)()()( 1 sMsNsTopt
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achieves the perfect model matching, i.e., J(T) = 0. 
 
   2) The nominal transfer function is non-minimum 
phase. Then, N(s) can be represented as 
                       
N(s) = )()( sNsN +−                                       (31) 
 
where )(sN −  is a Blaschke product and )(sN +  is 
free of poles and zeros in Re[s] 0≥ . If the desired 
model M(s) is selected as the same zeros as N(s) in 
Re[s] 0≥ , M(s) can be represented as 
  
M(s) = )()( 1 sMsN −                                     (32) 
 
where )(1 sM  is stable. Then, the perfect model 
matching is achieved by 
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4   Simulation Results 
In this section we shall use, for the linearized 
models (23), (24), the numerical values of the 
parameters of the electrohydraulic system as given 
in [4]. In order to apply the two-degree of freedom 
controller technique, we consider a reduced order 
model described by 
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     The magnitude of the approximation error of the 
8 order model by this 3-order model is represented 
in Fig. 2 and this approximation error is treated as 
an uncertainty. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The uncertainty bound 

Then, we select a rational stable minimum phase 
function )(sα  so that the condition (25) is satisfied 
for the above uncertainty (see, Fig. 2) 
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The sufficient condition for robust stabilization is 
illustrated in Fig. 3. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Illustration of robust stability condition 
 
     The controller parameters R(s) and S(s) are 
obtained as 
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     Choosing the desired model M(s) as 
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the perfect model matching is achieved for 
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Fig. 4. Step response 
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The step response of the 8-order model with the 
designed controller and the input control are 
presented in Fig. 4 and, respectively, Fig. 5. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Input control 
 
 
5   Conclusion 
In this paper, some nonlinear and linear models for 
an electrohydraulic system are derived and 
analyzed. To control this system a reduced order 
model is used and the error approximation is viewed 
as an uncertainty. The two-degree of freedom 
compensator technique allows to design a robust 
controller and the simulation results demonstrate 
good properties. 
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