
A Framework for an Adaptive Refactoring Tool

CAPT. ALAIN COUTU, CD, MSC
Aerospace and Telecommunications Engineering Support Squadron

Canadian Forces Bases
Trenton, Ontario

CANADA

CATHARINA SERINO, PHD
School of Business

North Carolina Central University
Durham, North Carolina

USA

SUZANNE SMITH, PHD
Computer and Information Sciences Department

East Tennessee State University
Johnson City, Tennessee

USA

SARA STOECKLIN, PHD
Computer Science Department

Florida State University
Panama City, Florida

USA

Abstract - Refactoring is the process of making changes to the internal structure of existing code without
changing the external behavior of that code. The resulting code is more flexible, reusable, and
maintainable. While refactoring is becoming more popular in the software development community,
manual refactoring can be a long and tedious process. Tools that support refactoring are becoming
available; however, many provide only limited types of refactorings and require heavy user intervention.
This paper presents an open source framework for an adaptive refactoring tool. The framework allows
easy addition of new refactorings or modification of existing ones. An implementation of the framework
is described in this paper.

Key Words- Software Tools and Environments, Software Engineering, Refactoring, and Design
Patterns

1 Introduction
Refactoring is the process used by software
engineers to transform existing code into a more
reusable and adaptable structure while keeping
the integrity of the code’s functional

requirements. The purpose of performing
refactoring is to increase program maintainability,
flexibility and understandability. Other benefits of
refactoring include making it easier to add new
code, improving the design of existing code,

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp138-143)

gaining a better understanding of code, and
making the code less annoying [1]. Such
refactoring also allows designers to experiment
with new design ideas [2].
 Refactoring is not a new idea. Smalltalk
programmers have been performing refactoring
manually since the inception of the language [3].
Structured programmers have used the techniques
of cohesion and coupling to refactor code since
the 1970’s [4]. Object orientation and extreme
programming [5, 6, 7, 8] have been driving forces
in increasing the use and popularity of refactoring
in recent years.
 Many refactoring tools [9, 10, 11, 12]
currently exist. Martin Fowler [10] provides a
comprehensive list of these tools with
descriptions and links to the tools’ perspective
websites. Most of these tools provide a limited
number of refactorings. Some of the most
commonly implemented refactorings include:
• Extract method, field or class
• Rename parameter, field, method, or class
• Encapsulate field
• Push down and up field or method
• Remove method, field and class
These tools also vary greatly in their
implementation. Some tools implement a
refactoring with automated code generation, some
require heavy human intervention, and others only
highlight code under suspicion.
 While these tools help with the long and
tedious process of manual refactoring, they do
have limitations. The requirement for heavy
human intervention is one such limitation.
However, as mentioned by Roberts et al. [3],
Tokuda and Batory [2], and Riggs and Stoecklin
[13], total automation of refactorings without any
human intervention may not be possible. With
certain refactorings, there exist situations where a
developer needs to provide information (e.g.,
variable or method names) or accept suggested
refactoring transformations. Other limitations in
current refactoring tools include their inability to
recognize the need for patterns, see commonality
of code, and allow users to define needed
refactoring methods. Despite the limitations of
current refactoring tools, the need to automate the
refactoring process is widely recognized in the
software development community.

2 Tool Overview
The software discussed in this paper is an
implementation of an innovative open-source
framework for a refactoring tool. The framework
is based on a generic notion of the refactoring
process. Extracting the generic notion of
refactoring requires the separation of the
characteristics of the refactoring process from
characteristics of a particular refactoring. This
separation is accomplished through the use of
design patterns. The framework for this
refactoring tool is constructed using design
patterns to implement polymorphic behavior. This
current software engineering practice provides an
adaptive software architecture [14]. The goal of
such an architecture is to build a system that it is
easily modified to add new or tailored
refactorings. Such adaptability allows software
developers to modify the refactoring tool to meet
their specific industry coding standards or
domain-specific software engineering needs.

Adaptive Refactoring Tool, ART, is the
implementation of this framework. It implements
several refactorings in order to demonstrate the
potential of this framework. The framework
structure of ART provides software developers
with an easily maintainable, independent
implementation of each refactoring. It also allows
adaptability to refactor code written in various
languages. ART performs refactoring
transformations on code written in any language
with a Backus Naur Form (BNF) description.

The generic underlying refactoring process
used by ART is the following:
1. The user initializes ART parameters to define

specifics such as refactorings that are to be
automatically implemented without human
intervention, refactorings to ignore, and
parameter constraints of refactorings.

2. The user selects the source code file(s) for
refactoring and specifies the choice of
language.

3. ART reviews (parses) the code and identifies
potential refactorings.

4. ART implements the refactorings identified in
step one as automated without human
intervention.

5. ART highlights other potential refactorings
and displays the original code in the left

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp138-143)

display area as shown in Figure 1 at the end
of the paper.

6. The user reviews the highlighted code, selects
a refactoring to implement, and inputs any
needed data such as a variable name. Default
names are provided by ART if user inputs are
not available.

7. ART modifies the code to implement the
refactoring, compiles the code to assure
syntactic correctness, and displays the
refactored code in the right display area as
shown in Figure 1.

3 Tool Description
ART consists of four major components which
are:
a) parser (any BNF-described languages),
b) refactoring transformer,
c) deparser, and
d) graphical user interface (GUI).

The parser reviews the source code selected
by the user. Using the appropriate language
grammar, the parser extracts the tokens. When
being refactored, new tokens are created for the
various refactoring transformation strategies.
These tokens are all of the same class type (i.e.,
AbstractToken) but may be of different types.
The AbstractFactory pattern creates these tokens
by the refactoring strategies without having the
knowledge of the type of tokens being created.
The parser component of ART has been created
using the JavaCC tool, freely available at
http://www.suntest.com/JavaCC. JavaCC permits
the generation of language parsers based on
grammars for an object-oriented language such as
Java and C++.

The refactoring transformer of ART is
responsible for modifying the set of tokens
provided by the parser to identify potential
refactorings. The user is able to specify some
refactorings to be implemented automatically by
ART. ART also allows other refactorings to be
selected through human intervention. In
implementing these refactoring transformations,
ART groups the refactored code in a package to
provide access to all the classes of the package.

An example of a refactoring transformation
provided in ART is Replace Magic Number with
Symbolic Constant. In this transformation, ART

searches the vector of tokens for any occurrence
of a numeric value being assigned to a variable or
used in an arithmetic operation. When such an
occurrence is found, ART replaces the numeric
value with a constant variable. The constant
variable name can be specified by the user or
named by ART.

Another example of a refactoring
transformation provided in ART is Encapsulate
Fields. ART searches the vector of tokens for the
declaration of a variable. When a non-private
occurrence is found, two methods, a set and a get,
are created with the appropriate parameters. The
vector is then searched for occurrences of the
variable being used or being assigned a value.
When found, the set or get method, with the
appropriate parameters, replaces the variable
name usage in the program to ensure proper
encapsulation.

After the refactoring transformer completes
the refactoring, it compiles the refactored code in
ART (i.e., without having to exit the application).
The compilation is implemented using the
package sun.tools.javac.Main. This package
returns either true or false based on the results of
the compilation.

In the refactoring transformer component of
ART, all transformations are implemented using
the Strategy pattern. The RefactoringStrategy
superclass holds the subclasses for each type of
refactoring. Each independent refactoring strategy
method contains the set of rules for implementing
a specifc refactoring and is polymorphically
selected to execute. Adding new refactorings
requires only the adding of another strategy
subclass as an extension of the
RefactoringStrategy superclass and modification
of the GUI to allow individual selection of that
strategy. Modification of existing refactorings
requires only overriding methods with newly
modified methods or, if needed, changing the
open source. Figure 2, shown at the end of the
paper, shows an abbreviated class diagram for
ART. The RefactoringContext,
RefactoringStrategy, EncapsulateFields, and
ReplaceMagicNumber classes were created for
the implementation of the Strategy Pattern. The
algorithms used for performing the refactoring
transformations were tailored using the
description of the refactoring found in [6]. The
TokenFactory and AbstractFactory classes were

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp138-143)

created to generate new tokens which are added to
the code vector.

After refactoring is completed, the parsed
source code is viewed in the ART environment
using the deparser component of ART, as shown
in Figure 1. The deparser component also displays
the resulting refactored code. Like the refactoring
transformation component, the deparser uses the
Strategy pattern to select the appropriate language
formatting.

4 Adaptive Framework Design
The adaptive framework design of ART is
accomplished using several design patterns.
Design patterns provide solutions to common
programming problems. These solutions are
expressed as collaborations between classes. The
general benefits of using design patterns include
the provision of a mechanism to develop highly
cohesive modules with minimal coupling. The
patterns also isolate the variability that occurs in
problem domains. This variability occurs in ART
with the various refactoring transformation rules.
ART allows easy modification of the various
refactoring rules allowing adaption to different
programming environments and local standards.
This allows easy addition or modification of ART
to allow the tailoring of the refactoring
methodology to a particular problem domain.

While many design patterns are used in ART,
the AbstractFactory pattern and Strategy pattern
illustrate adaptivity of ART’s framework. Grand
[15] defines those forces (i.e., considerations)
needed for the use of the AbstractFactory pattern
as: "a system that works with multiple products
should function independently of the specific
product that it is working with, should be possible
to configure a system to work with one or
multiple members of a family of products, class
instances intended for interfacing with a product
should be used together and only with that
product, remaining of the system work with a
product without being aware of specific classes
used for interfacing with the product and system
should be extensible to work with additional
products by adding additional sets of classes".
The AbstractFactory pattern is used in the
implementation of step 3 of the ART refactoring
process. In this step, the source code is parsed into

tokens. When being refactored, new tokens are
created for the various refactoring transformation
strategies. These tokens are all of the same
superclass type, AbstractToken, but may be of
different subclass types. By using the
AbstractFactory pattern, the tokens are created by
the refactoring strategies without having the
knowledge of the particular type of tokens being
created.
 Grand [15] defines the forces of
implementing the Strategy pattern as: "a program
has to provide multiple variations of an algorithm
or behavior, behavior variations can be
encapsulated in various classes providing a
consistent access methodology to these behaviors,
and classes using these behaviors do not require
knowledge of the implementation of the
behaviors". In ART, there are two situations
lending themselves to the use of the Strategy
pattern. When performing steps 4 and 5 of the
ART refactoring process, tokens are reformatted.
This behavior varies based on the type of token.
When reformatting, the deparser only needs to
know that a token is being reformatted. The
Strategy pattern determines the strategy for the
specific reformatting.
 The other situation lending itself to the
Strategy pattern is the selection of the refactoring
transformations. Each of the transformations
consists of a set of rules that must be followed.
The Strategy pattern is implemented as each
refactoring is a different strategy. This common
behavior, needed for all refactorings, is placed in
the strategy superclass. Only the behavior of
individual transformation rules is included in the
subclasses.

5 Conclusion
The need for tools and techniques to increase
program maintainability, flexibility and
understandability is well recognized by the
software development community. With
refactoring becoming more practiced and new
refactorings continuously emerging, automating
the refactoring process is becoming critical for the
wider acceptance and practice of this design
technique. ART, the open-source tool described in
this paper, not only automates the refactoring
process but also provides a mechanism to easily

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp138-143)

add new refactorings and modify existing ones.
ART is not completely implemented but is
intended to prove the framework concept and to
demonstrate the strong potential of the automation
of the refactoring process.

References:
[1] J. Kerievsky, Refactoring to Patterns,
Addison-Wesley, 2004.
[2] L. Tokuda and D. Batory, Evolving Object-
oriented Designs with Refactorings, Journal of
Automated Software Engineering,, Vol. 8, 2001,
pp. 89-120.
 [3] D. Roberts, J. Brant, and R. Johnson, A
Refactoring Tool for Smalltalk, Theory and
Practice of Object Systems Special Issue: Object-
Oriented Software Evolution and Re-Engineering,
Vol. 3, No. 4, 1997, pp. 253-263.
[4] C. Gane and T. Sarson, Structured Systems
Analysis:Tools and Techniques, Prentice-Hall,
1979.
[5] Beck, K., Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2000.

[6] W.F. Opdyke, Refactoring, Reuse and
Reality, Lucent Technologies/Bell Labs website,
1999.
[7] D. Roberts, Practical Analysis for
Refactoring, Ph.D. Thesis, University of Illinois,
Urbana-Champaign, IL, 1999.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke,
and D. Roberts, Refactoring: Improving the
Design of Existing Code, Addison-Wesley, 1999.
 [9] L. Huiqing, C. Reinke, and S. Thompson,
Tool Support for Refactoring Functional
Programs, Proceedings of the ACM SIGPLAN
workshop on Haskell, Uppsala, Sweden, 2003, pp.
27-38.
[10] http://www.refactoring.com.
[11] E. Glynn Mealy and P. Strooper, Evaluating
Software Refactoring Tool Support, Proceedings
of the Australian Software Engineering
Conference (ASWEC), Sydney, Australia, 2006,
pp. 1-10.
[12] J. Simmonds and T. Mens, A Comparison of
Software Refactoring Tools, Technical Report,
2002.
[13] R. Riggs and S. Stoecklin, Automated
Process for Code Refactoring, Proceedings of The
8th International Conference on Information
System Analysis and Synthesis, Orlando, FL,
2002.
[14] K.L. Lieberherr, Adaptive Object-oriented
Software: the Demeter Method with Propogation
Patterns, PWS Publishing Company, 1996.
[15] Grand, M.. Patterns in Java, Volume 1, A
Catalog of Reusable Design Patterns Illustrated
with UML, John Wiley, 1998.

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp138-143)

Fig. 1 ART Environment

Fig. 2 Class Diagram for ART

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp138-143)

