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Abstract: - Chaotic behaviors of the current mode controlled boost converter were demonstrated by 

computer simulation studies. The study implied theoretical considerations and simulations for this 

kind of converter using for the control OGY method and OGY combined with Pyragas method. The 

methods tried to establish a periodic behavior from a chaotic one in the converter case. 
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1   Introduction 
These years, the possibility of controlling nonlinear 

chaotic systems has been the subject of research. It 

was demonstrated that many unstable periodic orbits 

could transform in a periodic behavior using 

different control methods. The main class of 

strategies are based on the OGY control method. An 

alternative method was proposed by Pyragas and 

was called time-delayed autosynchronization. There 

is the third class of control strategies wich use state 

feedback controllers to solve the problem of 

controlling chaos[1-4]. 

 

 

2   Converter Operation 
The circuit scheme for this converter is 

shown in figure 1: 

 

Fig. 1 The current mode controlled boost converter 

 

The circuit consists from a controlled switch S, a 

diode D, an inductor, a capacitor  and a load resistor 

characterized by inductance L, resistance R and 

capacity C. The control for the switch is assured by 

a flip-flop and a comparator circuit. The circuit has 

two modes for its functionality depend on the 

position of the switch (Q=0 open or Q=1 close). The 

position of the switch S is also dependent of the 

value of the main current i and of the period T of the 

clock impulse. So, in the case of switch ‘close’ the 

main current i arise and the clock hasn’t any effect 

because the output of the flip-flop remains on ‘1’. 

The state of the switch is changed to ‘open’ when 

the current i is equal with reference current Iref 

because in this case the flip-flop is reset. In this 

situation the current will fall. 

 

Fig. 2 The waveforms for current and voltage 

 

From these waveforms is obvious that the 

circuit shows a variable structure and toggles the 

topology in relation with the states of the switch. 

The functionality of the circuit in the hypothesis of 

neglecting the voltage drop on D, can be described 
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by the following dynamical system with variable 

structure [1]: 
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where x=[v i]
T
 represent the state vector of the boost 

converter and depends on the state of the circuit: 
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3   Theoretical Background 
The OGY method assumes a few 

considerations. The dynamics of the system can be 

represented as arising from an n-dimensional 

nonlinear discrete-time function of the following 

form: 

 ( )p,xPx kk =+1     (3) 

where p is an accessible system parameter. In the 

(typically) case of continuous-time systems this map 

is given via some form of sampling. 

There is a maximum small perturbation ∆p
* 

in the parameter p by which it is acceptable to vary p 

from the nominal value p
*
. For the value of p

*
 there 

is a chaotic attractor of the underlying system which 

contains a specific periodic trajectory around which 

one wishes to stabilize the dynamics. 

The position of this periodic trajectory is a 

function of p, but the local dynamics do not vary 

much with the allowed small changes in parameter 

p. 

While the dynamics is assumed to arise from a map, 

one needs no model for the global dynamics. These 

assumptions would seem to allow for the control of 

any chaotic system for which a faithful map can be 

constructed, e.g., from experimental data. For 

simplicity the presentation is restricted to a two-

dimensional map P. 

An equilibrium point xF(p) of the map (3) of the 

system is defined by: 

 ( )p),p(xP)p(x FF =    (4) 

therefore it moves with the parameter p by: 
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Let x
*
(p

*
) denote the unstable equilibrium point of the 

map P existing for the parameter value p
* and 

corresponding to that periodic trajectory on the 

attractor which one wants to stabilize. From (5)  

results: 
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In the close neighborhood of the desired equilibrium 

point x
*
(p

*
) we can assume with good accuracy that 

the dynamics of map P is linear and can be expressed 

by the first-order approximation of : 
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Substituting (7) in (9): 

 ( ) kkk pgAIxAx ∆⋅⋅−+∆⋅=∆ +1  (10) 

Matrix A may be determined using a measured 

chaotic time series xk with p = p
* and analyzing its 

behavior close to the equilibrium point x
*. 

Furthermore, the stable and unstable eigenvalues λs, 

λu and corresponding eigenvectors es, eu of this matrix 

can be found and they determine the stable and 

unstable manifolds in the neighborhood of the 

equilibrium point like in the figure 3[5,7].  

Fig.3. The values for determination for fixed point 

position and for the Jacobian of the matrix A 

 

To control the chaos, the parameter p is adjusted at 

each iteration (so instead of p we have pk) in such a 

way that the iterates of the map P are confined to a 

small neighborhood of the desired equilibrium point 

x
*(p*). When an iterate falls near the desired 

trajectory, parameter p is changed from its nominal 

value p* by ∆pk, thereby changing the location of the 

trajectory and its stable manifold, such that the next 

iterate will be forced back toward the stable manifold 

of the original trajectory for p = p*.  

Assume that xk falls near the desired equilibrium 
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point x
*
(p

*
) so that (10) applies. The choice of ∆pk is 

attempted in such a way that ∆xk+1 lies along the 

stable manifold of equilibrium point. Let 

k
T

k xcp ∆⋅=∆  and (10) becomes: 

( )

( ) k
T

k
T
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c
T
 must be picked so that ∆xk+1 falls on the stable 

eigenvector es of matrix A, which can be rewritten as: 

 
T
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where fu and fs are the contravariant basis vectors, 

defined by 1== s
T
su

T
u efef  and 0== u

T
ss

T
u efef . 

Note that ∆xk+1 lies along es if 01 =∆ +k
T
u xf . Thus, 

dotting (11) with T
uf  and expressing A with (12) the 

following equation was obtained: 
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Using the definition of the contravariant basis 

vectors, (13) results in: 

 ( ) 01 =⋅⋅⋅λ−+⋅λ TT
uu

T
uu cgff            (14) 

which leads to the following equation for cT: 
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Therefore the OGY control law is: 
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where *
kk

*
kk xxx,ppp −=∆−=∆   

The control (16) is only activated if the resulting 

change in the parameter ∆pk is less than the maximal 

allowed disturbance ∆p
*; otherwise ∆pk is set to 

zero.  

Note that the parameter value k
*

k ppp ∆+=  should 

be updated only when the trajectory crosses the 

surface of section that generates map P. However, 

the trajectory may not be brought to the equilibrium 

point 
 

 
 

Figure 5. Schematic of the OGY control algorithm: 

a.The kth iterate xk falls near the desired equilibrium 

point x*(p*). 

b. Turn on the perturbation of p to move the 

equilibrium point. 

c. The next iterate is forced onto the stable manifold 

of x*(p*). 

Turn off the perturbation because of nonlinearities 

not included in (16). In this case the trajectory will 

move away and continue to move chaotically as if 

there was no control. Eventually (due to ergodicity of 

the uncontrolled attractor) the trajectory will fall near 

enough to the desired equilibrium point that attraction 

to it is obtained. 

The OGY method combined with Pyragas 

takes from OGY the philosophy and the discrete 

framework and from the first method of Pyragas the 

technique based on state feedback. Considering the 

system modeled by the discrete map given by (3) 

and applying a proportional state feedback will 

force the eigenvalue to be in the interior of the unit 

circle.  

 

 

4   Results 

Using the current I as controlled measure, by 

simulating, (1-2) the results are shown in figure 4 

 

Fig. 4 The variation of I before control 

 

a.  
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b. 

Fig. 5 I variation after OGY control method(b is 

detailed for a) 

 

The figure 5 shows the periodic variation after the 

OGY method was applied and figure 6 shows just 

the limitation of the current I after OGY combined 

with Pyragas method was applied. 

Fig. 6. I variation after OGY combined with Pyragas 

control method was applied 

 

5   Conclusion 
Two control strategies are proposed in order 

to avoid the unstable chaotic regimes of the behavior 

of a current mode controller boost converter and to 

ensure the stable periodic operation required by 

applications. 

The first one, the OGY method, transform 

the attractor in a periodic evolution as shown in 

figures 3 b . The second one, combined from OGY 

and Pyragas methods just changes the basin of 

attraction to a small one but does not stabilize the 

current to a periodic regime. 

The both methods change the chaotic 

regime of the controlled boost converter, with better 

results for the first. 
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