
Artificial Intelligence in the Maximum Clique Finding Problem
Applications

DENISS KUMLANDER

Department of Informatics
Tallinn University of Technology

Raja St.15, 12617 Tallinn
ESTONIA

kumlander@gmail.com

Abstract: In this paper we propose collecting different maximum clique finding algorithms into a meta-
algorithm, which enables to solve this NP-hard problem much more efficiently. We provide guidelines on how
this intelligent meta-algorithm can be built, what information is needed from the maximum clique finding
point of view and propose an elementary structure of it. Besides we review a test environment issue for the
maximum clique finding area. This topic usually is undervalued, although enables to provide knowledge on
algorithms behaviors and connections between algorithms and graph types, which later could be converted
into the intelligent meta-algorithm’s rules and definitions. We describe in this paper the test environment
model, define each part of it and propose integration principles.

Key-Words: Artificial intelligence, test environment, maximum clique finding, NP-complete task

1 Introduction
Let G=(V,E) be an undirected graph, where V is the
set of vertices and E is the set of edges. A clique is a
complete subgraph of G, i.e. the vertices of which
are pairwise adjacent. The maximum clique problem
is a problem of finding the maximum complete
subgraph of G, i.e. a set of vertices from G that are
pairwise adjacent. Those problems are NP-hard on
general graphs [8], no polynomial time algorithms
are expected to be found. There is a great interest in
developing a fast exact algorithm for instances with
a reasonable number of vertices since it can be used
in several important practical applications.
Examples are efficient register allocation [6], on-line
bin-stretching [1], scheduling of parallel jobs [3] and
a lot of others [4].
 This article’s aim is to put together different
ideas, possibilities and needs arising in the
maximum clique finding and synthesize an
intelligent algorithm that could address all those
issues. Here we look on the maximum clique finding
problem from the programming, i.e. applying point
of view rather than from a poor mathematical point
of view. Ideas about an intelligence of algorithms
are widely discussed in data analyses, data mining
and similar areas and less in the NP-problems;
although some ideas are used in heuristic algorithms
– see for example Jagota and Sanchis 2001 [9].
Therefore we try to start this discussion by this
article. Another topic we discuss is a testing
environment needed for the maximum clique
algorithms. This is an infrastructure for the

algorithms’ research procedure and is a way to
derive a lot of knowledge about algorithms
behaviors and connections between algorithms and
graph types. We provide a model of building the test
environment basing of a huge number of
experiments we did earlier [12, 13]. This part of the
work contains a discussion started by Johnson [10].

2 Artificial Intelligence for the
maximum clique finding
Here we are going to present a philosophy of
building an algorithm that concentrates inside itself
all best algorithms and is intelligent enough to apply
the right one. This idea means that we have to have
a meta-algorithm that will collect data, the meta-
algorithm that will have some intelligence. Different
types of intelligence could be used. The easiest way
is to have an “expert systems” type meta-algorithm,
which will have fixed type rules. The more complex
one could be clever enough to learn like, for
example, neural networks do.

2.1 “Expert” type intelligence
Unfortunately there is no universal algorithm that
solves all graphs cases faster than other algorithms.
It is rather common to have a set of algorithms or
modifications of those that have different strong
sides and therefore are good in solving one or
another particular graph case. Besides there are

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp132-137)

graph types that can be solved in a polynomial time
by dedicated algorithms.
 Therefore, the first idea could be to collect all
this knowledge inside one algorithm, i.e. build the
meta-algorithm with fixed rules that will select the
best algorithm basing on the preliminary
information about a graph to be solved, or basing on
an initial analyse of the graph. The easiest
information that we usually have before running the
main algorithm is the graph’s density. For example,
it is well known that if the density is no bigger than
10% then there is no better algorithm for solving the
maximum clique problem than the trivial and
powerful Carraghan and Pardalos one [5] that solves
the problem directly without spending valuable time
to any unnecessary additional steps [12].
 Another type of information that we can have is
the type of a graph. Of course this information is not
always available, but if you have it or know how the
graph is built then it is possible to save a lot of time
by applying the right algorithm to find the maximum
clique. For example, there are permutation, perfect
graphs, interval graphs and some others that can be
easily solved by corresponding algorithms in the
polynomial time and there are no points to apply for
them algorithms targeted to solve all possible
types/structures of graphs [2, 4, 11]. Certainly only
some graphs can by solve in the polynomial time,
but even for graphs that are hard to solve there could
be algorithms that suit more. Besides usually
researches do not tune their algorithms to perform
better on one or another graph type, but this could be
done and this provides a lot of possibilities to come
up with tuning ideas for existing algorithms to make
those better on certain graph types. It is logical also,
that all those modifications should be available to
the meta-algorithm to choose, which of them to run.

 The meta-algorithm should follow the next
general rules:
• If the type of a graph is known then it should

run the best algorithm for that type;
Note: It means that the meta-algorithm should
have some knowledge base into addition to
available algorithms that will allow choosing
the right algorithm to run.

• Choose an algorithm basing on the graph’s
density;

• Repeat previous step for each parameter the
meta-algorithm can consider;

• Run the algorithm that was chosen.

2.2 Algorithm Learning and Results
Knowledge Base

In the previous chapter we have reviewed
possibilities to use fixed type rules. We have built
the meta-algorithm, which is an expert in the
maximum clique finding. We used “Expert systems”
ideas and provided our meta-algorithm with all
knowledge we have at the moment. Unfortunately,
we do again an assumption that we have to invent an
algorithm that will deal with very different graphs
and that should solve any graphs. There is one motto
that is widely used nowadays – “Think globally,
operate locally”. Any particular case could have its
own aspects, properties etc. of graphs to be solved.
We could not foresee all those aspects and moreover
those can be opposite from what we were expecting,
or those requirements could be opposite from an
algorithm building point of view. Therefore the ideal
case will be a self-learning algorithm. Of course, we
do not talk about a meta-algorithm that will invent
new algorithms to find the maximum clique.
Probably it is too self-confidently to try invent such
right know. What we mean is a meta-algorithm that
will be able to collect some statistic about
algorithms’ performance on graphs that were solved
and later, basing on this statistic, will be able to
choose, which algorithm to run. This meta-algorithm
will adapt to a particular environment and graphs
existing in this environment, to the environment
where it has to operate. This adaptation will mean
that we move from the general “expert system” to
the more evolving algorithm, which is able to
“survive” in any particular environment in the best
way.
 The information collecting, which
algorithm/modification is better, generally means
that the meta-algorithm will try to run all
algorithms/modification with all graphs. Otherwise
it will not be possible to answer a question: “Will
any other algorithm perform better than the one we
are going to use?”. Another important aspect we
should think about is providing more information
than the meta-algorithm can collect by itself like a
graph’s density or number of vertices. Is there any
additional information on the graph? Are all graphs
the same or you know their types? Is it possible to
distinguish a source of the graph? Any such
information will be useful to keep statistic and better
adapt for any particular graph cases.
 Now, when we know all additional information
and we can pass those details into the meta-
algorithm. The main question is how to start
collecting data? This can be done in two ways.

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp132-137)

 The first way is to run other algorithms while in
the stand-by mode. Sometimes the meta-algorithm
that finds the maximum clique is asked rarely to do
it. So it doesn’t have to resolve immediately another
problem after the previous one. In this case, after
returning an answer, the meta-algorithm can use
available free resources. It can try all other different
algorithms, which weren’t used to give the answer,
to find if there was a better/quicker way to perform
the task. Basing on the collected information each
algorithm could receive points (for example 1 point
each time to the fastest one). Basing on those points
an algorithm to be used the next time should be
chosen. If there is a high probability that a new task
will arrive soon then the meta-algorithm should try
algorithms in the already obtained points’ sequence.
This will allow trying first of all the most probable
one to be the fastest then the next probable one and
so forth.
 Another idea is to train the meta-algorithm use
algorithms available inside him as sub-algorithms
for finding the maximum clique prior to the real
using. The idea allows collecting statistic before you
start to use the meta-algorithm and it will not be
necessary to spend resources on later statistic
collecting while in operation.
 The training could be done by asking to solve as
many different types of graphs as possible in all
required modes if any exists – like a requirement to
stop after, for example 10 seconds and provide the
best found solution etc. For any type/mode as many
graph examples as possible should be used. Instead
of using artificial examples, it is always advisable to
use such examples that will likely occur later during
the real using of the meta-algorithm.
 It is also important to monitor the performance
and changes in the environment. If graphs to be
solved are changing due some changes in the
requirements or you suspect that the meta-algorithm
is not providing its best, then it is time to re-train the
meta-algorithm.
 Both ways have another very important
advantage into addition to described – those ways
allows collecting information that makes possible
also to learn (you) how well graphs are solved and
which algorithms are used to solve any particular
graph case. This gives a possibility to analyse
collected statistic and may be invent even better
modifications of existing algorithms.

3 Testing Environment
Here we are going to describe a testing environment
that can be used to test maximum clique finding

algorithms. This environment has mainly figured out
during our works on maximum clique algorithms
[12, 13]. This discussion can be seen as the next step
of experimental analysis of algorithms discussion
started by Johnson in the year 2002 [10]. The goal of
the testing environment is to test different
algorithms for finding the maximum clique and
mainly measure a time needed to find a solution,
although some other parameters can be measured in
case corresponding parts are implemented for each
module (algorithm) to be tested. The following
requirements have figured out as essential needs for
a testing environment of our type, i.e. for algorithms
finding the maximum clique:
• It should be able to test different types of graph

classes, like random and external graphs.
Random graphs means that the system should
have a module that is able to generate random
graphs. Note that a „true” randomisation is
required, since each time a lot of graphs of the
same type should be provided. There is no
point to generate graphs that are very similar
and moreover it should not happen that
randomisation is restarted each time a graph is
generated and it leads to generating exactly the
same graphs. Another type that could be loaded
into the environment is external graphs. Note
that currently different standards exist therefore
the following types of graphs definitions
should be supported: DIMACS format graphs –
both compressed and decompressed versions
[7]; Adjacency matrix graphs, i.e. graphs that
are defined by an adjacency matrix.

• It should be able to solve both problems:
finding the maximum clique and finding the
maximum independent set using the same
modules (algorithms), since those problems are
equivalent and there are different graphs for
both problems.

 Getting into account those requirements we have
figured out the testing environment that contains the
following main parts:
• Algorithms or modules that implement one or

another algorithm;
• Utilities’ modules that generates graphs;
• A meta-algorithm that makes tests by

rerunning algorithms with the same graphs;
• A user interface
• Providing a feedback, i.e. info on events and

the current processes’ status;
• Allowing defining algorithms to be tested and

graphs to be used for testing.

Let’s review each module separately.

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp132-137)

3.1 Modules
Modules are parts of the environment that are
implementing algorithms. Each module should have
two main properties:
• It should be standard from the input/output

interface point of view;
• It should be written using the same

programming language and techniques as other
modules, as much as possible. This will ensure
that neither algorithm is better due the better
programming. So, all tunings made for any
algorithm should be transferred to others if it is
possible.

 So, each algorithm is implemented as a standard
module and can be easily added into / removed from
the testing environment. The input parameter is a
graph to be solved and the output is the size of the
maximum clique. It is required to control if all
algorithms are working right and size of the
maximum clique of a graph obtained by different
algorithm is the same. Note that for test we are
mainly concentrating on spent times and sizes of the
maximum clique rather than an actual maximum
clique vertices as an output.
 It is also possible to measure some other
parameters by programming into modules a standard
block for that. The block is programmed once and
then adopted inside each algorithm. The ideally
programmed block should not require any
adaptation since otherwise similarity of algorithms
will decrease because of such measuring. This way
we measured a number of analysed branches /
iterations made by algorithms. The ideal way to
activate such blocks is a global variable. Although it
is not advised to have global variable, here it looks
to be the best way to go since allows controlling of
algorithms work from one central place and makes
algorithms easily moveable between the meta–
algorithms slots that are activating algorithms’
modules.

3.2 Utilities
This is a part of the environment that provides a
general level functionality. First of all those are
input/output functions:
• Function allowing reading external graphs;
• Function allowing generating a random graph;
• Function allowing saving results in an output

file.
 As we already stated before 2 main formats have
to be used: DIMACS and Adjacency matrix. The

first one is the main format that is used in
researches. Graphs of this format are often
compressed and stored in so called binary format,
although the decompression algorithm can be easily
found in the Internet or in the same ftp folder of the
DIMACS program, where graphs are stored. The
second format is used in some university classes,
since a graph definition using an adjacency matrix is
more visual and therefore is easily understandable
by students.
 The only note that we can do on generating
random graphs - sometimes it is necessary to
generate random graphs of a predefined type. So, it
is possible to use more than one graphs’ generation
technique and choose one of them using an option
somewhere on the main user interface. Please note
that whatever way a graph is generated or whatever
format of an external graph is used, internally the
graph should be saved in one, “standard” for this test
environment way. This ensures that all graphs are
treated in the same way by modules. Besides, the
graph’s reference i.e. the input parameter stream for
modules will be the same for all cases.

3.3 Meta-algorithm
A meta-algorithm is a main part of the testing
environment that mainly glue parts together and
manage those parts work. The main goal of the
meta-algorithm is to run algorithms one by one
using the same parameters and capture a time spent
of finding the maximum clique and check
correctness of algorithms work by comparing the
result – size of the maximum clique produced by
different algorithms. The process of testing is done
in iterations for all densities and numbers of vertices
that are required to be tested as many times as it is
required. An alternative process is providing
algorithms with an externally defined graph and
capturing the same output parameters, as it was
defined above. Anyway, each time exactly the same
graph should be provided for each algorithm to be
tested. Note that each testing iteration should be able
to involve activating different modules – options in
the user interface should define which algorithms to
test.
 Another important feature of the meta-algorithm
is storing results and calculating statistic – minimal,
maximal and average results. We have found that it
is useful to output as individual number as the
statistical information since the statistical
information is the main research result while
individual numbers allow understanding trends and
make other calculations in case those were not
planned in advance.

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp132-137)

 An ideal structure of activating modules can be
the next:
• Modules should be built using the same base

class, which will have a starting function
having common input/output parameters –
those have been described earlier;

• The meta-algorithm should have a set of slots
(array or collection), which can contain base
classes, so any module can be placed into any
slot. Those modules are put into slots if and
only if those should be tested in the general
testing iteration – it is defined by options at the
user interface;

• Modules from each slot should be run one by
one either for each generated graph or for an
external graph and modules’ output properties
captured. Note that ideally the same slots
should be able to store those output parameters;

• The activation, which is described on the
previous step, should be done as many times as
it is defined in the user interface. We used to
run each test 100 times to collect enough data
to make a trustable statistic. The result of this
process is an output using the utilities’ module
to an external file;

• If randomly generated graphs are tested then
the previous step should be done for each
vertices number / density. Densities should be
defined as a range allowing testing more than
one density at once (during one test iteration).
Note that best practises make us to advise
defining a vertices’ number for each density
rather than one vertices number for all densities
since a time spent on finding the maximum
clique on different densities for the same time
differ dramatically. Therefore it is useful to
orient on the spent time you want to have rather
than on the number of vertices.

 The meta-algorithm should also produce events
allowing seeing a status of the testing process.
So, the meta-algorithm is a core part of the testing
environment that manipulates modules and storing
results of the testing process.

3.4 User interface
This is the last element of the testing environment
but it doesn’t mean that this element is not
important. Of course, it looks like the testing, i.e. the
meta-algorithm and modules are main important
parts, but it isn’t quite true. The visual feedback is
very important as well as a possibility to define
options in the easy and comprehensive manner. It

makes the environment user friendly and allows
testing more and quicker.
 The user interface should first of all allow
defining will graphs be generated or provided
externally. If the graph is provided externally then
the source of the file containing the graph
description should be defined and the type of the
graph description, i.e. DIMACS or Adjacency
matrix. If graphs should be generated then a range of
densities and the step of moving inside the range
should be defined. For example densities from 10%
to 90% with a step equal to 10%. In addition to that
a range of numbers of vertices and the step of
moving inside the range or numbers of vertices for
each density you are planning to have in the testing
and a number of times graphs should be produced
and tested for each density and number of vertices.
The last but not least parameters are a destination’s
file for the output of the testing and which
algorithms to test.
 The user interface should also show the status of
the testing and a message on end of the testing
process. This helps to orient in the testing process
workflow and immediately recognize situation when
resolving graph cases do require much more time to
find the maximum clique that was planned initially.

3.4 Integration
This last subchapter puts all modules together and
shows how those are integrated / work together. The
integration can be done if and only if all parts are
using same standards / interfaces, raising standard
events and returning expected outputs. It was shown
earlier in the “Modules” and the “Meta-algorithm”
subchapters what the standardization means for the
modules’ structure and in the utilities’ part for
graphs to be read or generated. The test
environments parts can be divided into three layers.
The high-level model has three layers. The first
layer contains the user interface, which lets a user to
work with the meta-algorithm. This layer is an
intermediate layer that disables users to work /
interact directly with the meta-algorithm or modules
(for example in a DOS like mode). This layer
verifies correctness of input parameters. The second
layer contains the meta-algorithm – the core of the
system that receives parameters from the user
interface and run tests. It is a testing logic layer. The
third layer contains both utilities and modules.
Those objects are indirectly interacting using a
graph object that is created by utilities and
consumed by modules (implementing algorithms),
which are finding the maximum clique in it.

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp132-137)

