
EOOA: An Extensible Object Oriented Data Model

For Automata Applications

Mina Zolfy, Saeed Nikmehr
Electrical and Computer Engineering Department

Tabriz University

Tabriz, IRAN

Abstract: - A navel data model for automata applications is presented. The EOOA model relies on the hierarchical

possibility of object oriented concept. EOOA has an extensible object oriented structure with a powerful hierarchy

and flexibility which could be used to represent automata in automata related applications. It also allows designers

and developers to integrate different applications together in the same environment with a lesser effort.

In this work, we have illustrated the data structure model and also the technique of extending the structure for a

sample application.

Key-Words: - automata, implementation, object oriented, inheritance, hierarchy

1 Introduction
The role of the computer science in technological

advancement is inevitable. Therefore consolidating

the relation between computer science and its

practical applications is an effective enhancement

step.

The computational theory with its automata

branch as a field in computer science could help us in

this enrichment approach [1]. Automata are used in

many applications in software as well as hardware

engineering [2].

As a design example in software engineering, a

compiler design procedure could be mentioned. A

compiler design starts with a complete definition of

the corresponding language. Then an automaton is

designed which accepts the language, and finally the

compiler is produced. In hardware engineering, when

the objective is the design of a sequential or any

other controller digital circuit, the automata are used.

The process involves an automaton design which

after some algorithmic steps yields the intended

circuit layout.

These examples present some of automata

applications. Later, we will discuss the role of our

innovative EOOA method in accelerating the

technological advancement.

As the technologies grow in a faster rate, the

decreasing of a project completion time becomes an

important evaluation criterion. The automating of a

number of process steps in the projects could

considerably shorten the manufacturing time. The time

reduction by means of automation, using the data

model is presented in this paper.

Although, the developed tools for a specific field

are not exactly alike, but they might share some

common backgrounds. The ability of linking together

such tools could have some benefits for users as well

as developers. This could be done with using the

proposed data structure in common practice. The

proposed data model has enough potential to acquire

all of the requirements of related applications, and also

has enough extensibility for development of each

application without affecting others.

One of the widely used data structures for

automata related application is ASTL. However, it has

not enough extensibility to fit several applications

concurrently [3]. Also AutoML is a representation of

automata but it is based on XML and must have a

runtime data structure to be loaded into memory

during the related tool execution [4].

The description of automata and some of its

categorization is given in section 2. The proposed data

model, which is to be used in common for automata

related applications, is explained in section 3. Sections

4 and 5 contain conclusion and references in order.

2 What is an Automaton?
An automaton is a general term for any formal model

of computation. In other words, an automaton is an

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp185-189)

abstract model of a digital computer, which includes

some essential features. It has a mechanism for

reading inputs. It will be assumed that the input is a

string over a given alphabet, written on an input file,

which the automaton can read but not change. The

input file is divided into cells, each of which can hold

one symbol at a time.

The automaton can produce an output of some

desired form. It may have a temporary storage

device, consisting of an unlimited number of cells,

each capable of holding a single alphabetical symbol.

The automaton can read and change the contents of

the storage cells. Finally the automaton has a control

unit, which can change state in some defined manner.

2.1 Finite Automata
Typically, a finite automaton is represented as a state

machine. That is, it consists of a finite set of states

with some outputs, a set of transitions from state to

state, a start state, a set of final states, and an input

string.

A state transition usually has some rules

associated with it that govern when the transition

may occur, and are able to remove symbols from the

input string. The main specification of Finite

automata is its limited storage. The storage is

restricted to the states and no temporary storage is

included.

2.1.1 Acceptors (DFA, NFA)
An automaton whose output response is limited to

simple “yes” or “no” is called an acceptor. Presented

with an input string, an acceptor either accepts or

rejects the string.

DFA (Deterministic finite acceptor) is one in

which each state of an acceptor of this kind has a

transition for every symbol in the alphabet. On the

other hand is NFA (nondeterministic finite acceptor)

in which states may or may not have a transition for

each symbol in the alphabet, or can even have

multiple transitions for a symbol.

2.1.2 Transducers

A more general automaton capable of producing

strings of symbols as output.

2.2 Push Down Automata (PDA)
Such machines are identical to finite automata,

except that they additionally carry memory in the

stack form. The transition function δ will now also

depend on the symbol(s) on top of the stack, and will

specify how the stack is to be changed at each

transition.

2.3 Turing Machine
A famous automaton is the Turing machine, invented

by Alan Turing in 1935. It consists of a (usually

infinitely long) tape, capable of holding symbols from

some alphabet, and a pointer to the current location in

the tape.

 There is also a finite set of states, and transitions

between these states, that govern how the tape pointer

is moved and how the tape is modified. Each state

transition is labeled by a symbol in the tape's alphabet,

and also has associated with it a replacement symbol

and a direction to move the tape pointer.

3 EOOA
3.1 Why common representation?
There are many applications that embed the same or at

least similar structures of computational model in their

infrastructure. Such systems use some scientific

aspects in common, so their connectivity will be one

of their significant advantages. This is the purpose of

our proposed common structure for all automata

applications in this work.

3.2 EOOA
All automata applications require a data structure for

automata representation which could be our presented

EOOA. EOOA is an object oriented data structure in

which individual aspects of each automaton is laid on

different objects of its classes.

Each successful data structure in all applications

must have some features. Some of the features that are

included in the EOOA are presented here:

3.2.1 Extensibility
Functionality requirement of useful tools, typically,

increases over time. Especially in a research

environment, a successful data model must provide a

means by which new information or functionality can

be associated with an existing description or entirely

new kinds of informational structures can be

represented on the spur-of-the-moment.

In order to maximize the performance and

capacity, the ability to allocate space for extension

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp185-189)

information, as the core information, within the same

storage unit is important.

3.2.2 Efficiency
A data model must be much more efficient (in both

space and time) to read and write than reading or

writing the other equivalent representation. Both

space and time efficiency dictates a binary (rather

than strictly textual) data model. The binary

representation must be compact, storing the required

information with minimal redundancy.

Objects within the EOOA must be rapidly

mapped into and out of the corresponding file

representation. A direct map between EOOA and the

corresponding file, such as a memory-mapped file,

provides higher performance. However, such a

technique does not satisfy our portability or

integration requirements.

3.2.3 Integration

A practical data structure must facilitate integration

of separately implemented units and extraction of

design fragments for reintegration with other designs.

3.2.4 Security
Designs often embody proprietary information and

intellectual property. Typically some subset of this

information must be exported in order to make the

design useful. This exported design information must

be usable for exactly what the information supplier

was intended; nothing more and nothing less.

3.4 EOOA Classes
In EOOA structure the pure data of automata are

stored in the classes with names that are prefixed

with ADMBase_ and ADM_ (for example

ADMBase_State and ADM_State). Each class such as

ADM_State inherits the relevant class with

ADMBase_ prefix (in this example ADMBase_State).

The classes are explained in detail in the following

subsections.

3.4.1 Base Classes
Fig.1 illustrates EOOA Base classes, and parent-child

relationships in various levels. Base classes of EOOA

have three levels in their inheritance hierarchy. The

root class in the shown tree of Fig.1 is named

“ADMBase” which is the parent of all classes. It

means that other classes are derived from it in several

hierarchical levels.

The classes shown in Fig.1 have the “ADMBase”

phrase as prefix in their names which illustrates the

base class of “Automata Data Model” that have the

essential data members of automata. For example,

Fig.2 shows data members of

ADMBase

ADMBase_Automaton

ADMBase_State

ADMBase_Transition

ADMBase_Memory

ADMBase_List

ADMBase_Data

ADMBase_Name

ADMBase_Value

ADMBase_Label

ADMBase_FiniteAutomaton

ADMBase_PushDownAutomaton

ADMBase_TuringMachine

ADMBase_InitialState

ADMBase_FinialState

ADMBase_LambdaTransition

ADMBase_Stack

ADMBase_Tape

ADMBase_StateList

ADMBase_DataList

ADMBase_TransitionList

ADMBase_Letter

ADMBase_Lambda

ADMBase_String

ADMBase_StackStartElment

Level 1 Level 2 Level 3

Fig.1: Three layer inheritance hierarchy of EOOA classes

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp185-189)

“ADMBase_Automaton” class, its base parent, and

its base children.

3.4.2 Main Classes
Main classes are named with ADM_ prefix and there

is a one to one relation between the set of base

classes and the set of main classes. Each class in the

set of main classes inherits the related class in the set

of base classes. This inheritance is shown more

clearly for the levels 1 and 2 in Fig.3.

The data members in the base classes are

instantiated from the main classes, as shown in Fig.2

by means of an example.

3.4.3 Extension classes
Between each predefined level in the EOOA class

hierarchy, one or more application-specific extension

classes may be inserted. Application-specific

methods may be inserted into the EOOA class

hierarchy as part of these extension classes.

Furthermore, application-specific data elements may

be inserted into any of the extension classes associated

with insatiable classes. For example, extension classes

may add methods and data elements representing

"temporary" information about application related

features.

For documentation clarity, all such extension

classes and declarators within these extensions are

distinctly identified. The names of any intervening

extension classes should assume the form

ADM<Extension Designator>_<Specific class name>.

For example, a VHDL code extractor application

might interpose an extension class

ADMVHDL_Automaton between ADM_Automaton

and ADMBase_Automaton.

Fig.4 shows an example of an extended class for

ADM_State. As it is seen, the extension class is

inserted between the main and base classes in the

inheritance tree. In a specific application, some classes

Fig 3 : Inheritance for main and base classes

ADMBase_Automaton

ADMBase_State

ADMBase_Transition

ADMBase_Memory

ADMBase_List

ADMBase_Data

ADMBase_Name

ADMBase_Value

ADMBase_Label

ADMBase

ADM_Automaton

ADM_State

ADM_Transition

ADM_Memory

ADM_List

ADM_Data

ADM_Name

ADM_Value

ADM_Label

ADM

ADMBase_TuringMachine

ADM_DataList Tape_Alphabet;

ADM_Tape *Tape;

ADMBase_Automaton

ADM_State *Initial_State;

ADM_StateList States;

ADM_TransitionList Transitions;
ADM_DataList Automaton_Alphabet;

ADMBase_PushDownAutomaton

ADM_DataList Stack_Alphabet;

ADM_Stack *Stack;

ADMBase

ADM_Label *Label;

ADM_Name *Name;

int X;

int Y;

OBJ_Kind Kind;

ADMBase_FiniteAutomaton

(no data member)

Fig 2 : Data Members of Automaton class and its children

ADM_State

ADMBase_State

ADMSch_State

Fig.4 : Extended class example

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp185-189)

may need no new member (neither data nor function)

for some classes.

As it has already been mentioned, EOOA is

proposed in order to integrate the applications of

automata to the same environment. When more than

one extension is required to appear in the data

structure, all of extensions are inserted between the

main and base classes. If one application requires a

data element from another application, then must be a

child for it.

3.5 EOOA Example
An example of using EOOA structure for an

application with two separate parts is discussed here.

Each part could work separately and also both could

be extended in the same structure.

Part one is a schematic editor for automata and

part two is a behavioral Verilog code extractor for

sequential circuits.

These applications are implemented using the

presented structure, and the inheritance hierarchy is

shown for a sample class in Fig.5.

As shown above, two extension layers are

inserted in the inheritance tree of some classes (fig

5.a). But all classes are not the same. Depends on the

application some no extension for some classes will

be added. First part is an application which provides

a graphical user interface for drawing automata and

second part is an application extracting Verilog code

from an automata. If both parts gathered in an

environment, the users would have the ability of both

drawing and extracting code from an automata. If the

second part works separately, then automata must be

analyzed and loaded into the ADM structure using an

separate analyzer then the code be extracted from

analyzed automata.

4 Conclusions
A hierarchical object-oriented data model is presented.

The model is implemented in C++ and it has been

extended for the case of two applications.

The model could be implemented in any other

object oriented language for any applications. The

abilities of model are presented, and the extensibility

is recognized as the major capability.

The proposed model is to be used as a standard

for automata applications, and enables the interaction

and integration of them.

5 References
[1] Peter Linz, “An introduction to formal languages

and automata”, jones and Bartlett publishers,2001

[2] Shalyto A.A. “Logical control. Methods of

hardware and software algorithms

implementation.” SPb.: Nauka (Science), 2000

[3] Lincent le Maout, Dominique Revuz, “Tools to

implement automata, a first step : ASTL”,

Proceeding of the workshop on Implementation

and Application of Automata ,1997,pp 104-108

[4] Yongbo An, Sheng Yu, “AutoML: Definition and

Implementation”, 2004

[5] Yasmina Abdeddaim, Oded Maler, “Scheduling

with Timed Automata”, PHD thesis, INPG

Grenoble, 2003

[6] Pierre Wolper, Bernard Boigelot, “An Automata-

Theoretic Approach to Presburget Arithmetic

Constraints”, Proc of Analysis symposium,

Glascow 1995, pp 21-32

[7] Richard Raimi, Ramin Hojati, Kedar S. Namjoshi,

“Environment modeling and language

universality”. ACM Transaction on. Design

Automation of Electronic Systems ,2000, vol. 5,

pp 705-725

[8] Michael Sipser, “Introduction to the theory of

comptation”, PWS publishing company,1997.

[9] Hopcroft, J. and J. Ullman, “Introduction to

Automata Theory, Languages, and

Computation(3
rd

 edition)”, Addison-Wesley.2006

ADM_X

ADMBase_X

ADMSch_X

ADMVlg_X

ADMBase_X

ADMSch_X

ADM_X

ADMBase_X

ADMVlg_X

ADM_X

Hierarchy for

the classes that

need new

member for

both extensions

Hierarchy for

the classes

that need new

member only

for Schematic

editor

application

Hierarchy for

the classes that

need new

member only

for Verilog

extractor

application

Fig.5: Two concurrent extensions

a b c

Proceedings of the 7th WSEAS International Conference on Automation & Information, Cavtat, Croatia, June 13-15, 2006 (pp185-189)

