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Abstract: An one-line image database search method, which utilizes the boosted-shape feature similarities, is
proposed. Salient common feature informations provided by the relevance feedback or multi-instance query are
boosted for improving retrieval results. Weak classifiers are successively refined to yield a final strong classifier.
The similarity between two shape samples was measured in statistic space of features, through which relative
instead of absolute similarity was targeted for visual information retrieval. Experiments of query by the boosted
features on thirty thousand trademark images showed that the retrieved results meet visual similarity of shape very
well. Objective evaluations, precision-recall hit curve and averaged normalized modified retrieval rank, ANMRR,
demonstrate improved retrieval performances of the proposed method. It shows that only 5 - 7 boosted features out
of 100 or more were enough to represent subjective recognition on shape similarity.
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1 Introduction

Content-based similarity retrieval for multimedia data
becomes important after international coding stan-
dard, such as JPEG, MPEG-1, -2, had been widely
used and distributed over Internet. The multimedia
content description interface, MPEG-7[1], had been
proposed to provide normal descriptors for database
search engine. For 2D shapes, contour-based and
region-based descriptors, shown in Fig. 1, have been
proposed in MPEG-7. Describing image shape con-
tours with Fourier descriptors (FDs) [2] yields size,
rotation and transition invariant descriptors for index-
ing. However, FDs are sensitive to noises. A mul-
tiscale, curvature scale space descriptors had been
proposed to improve the stability in contour descrip-
tion and matching [3]. For region-based descrip-
tors, Zernike and psuedo-Zernike moments (ZMs and
PZMs) also provide size, transition and rotational in-
variant descriptors for similarity retrieval [4]. The
ART is another angular-radial transform adopted by
MPEG-7 and it can be generalized [5] to deal with
gray-scale images and perspective deformations. The
indexing system, though more than one feature sets
are accommodated, is with single similarity retrieval
target. In [6], visually salient feature is determined
using probabilistic distribution model of features from
trademark databases, however, feedback control had
not been investigated.

For similarity retrieval, each user has his defini-
tion on shape similarity that the query system usu-
ally provides relevance feedback or multi-instances to

learn. In [7], an online relevance feedback learning
method for CBIR, by utilizing the region-based rep-
resentation to describe images in a uniform feature
space, was proposed. Other learning approach could
be found in [8]. We proposed to boost salient com-
mon features among query samples such that user’s
recognition on similarity is targeted. The boosting al-
gorithm consistently selects weak hypotheses that are
slightly better than random guessing, and the error
of the final hypothesis would drops exponentially fast
[9]. In general, only global shape contents are subjec-
tively recognized for similarity measure [6]. We thus
proposed to successively boost one salient common
feature under the boosting framework. Similar con-
cept can be found in [10]. In addition, when both posi-
tive and negative query images are provided, its proper
to actively choose converging positive features while
excluding negative ones, which are usually sparse and
diverse, passively.

This paper is organized as follows. In section 2,
descriptors for shape content in images are presented.
Pre-processing for each image is introduced in sec-
tion 3. The query mechanism by boosting salient com-
mon features is described in section 4.2. Simulation
study is provided in section 5. Section 6 concludes
the paper.

2 Shape Descriptors

Shape descriptors are extracted from image contents
according to applications of indexing. For shapes
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in images, we use region-based shape descriptors,
Zernike and pseudo-Zernike moments [11], as the ba-
sic feature sets.

Zernike moments are defined inside the unit cir-
cle, and the radial polynomialsRnm(ρ) are defined
as:

Rnm(ρ) =

n−|m|
2∑

s=0

(−1)s (n− s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
ρn−2s,

(1)
wheren = 0, 1, · · · ,∞, |m| ≤ n and n − |m| is
even. The two-dimensional Zernike moment with or-
dern and repetitionm of an image, in polar coordi-
nateI(ρ, θ), is defined as:

Anm =
n + 1

π

∑
ρ

∑

θ

[Vnm(ρ, θ)]∗ · I(ρ, θ), s.tρ ≤ 1.

(2)
The Zernike basis polynomials,Vnm(ρ, θ), are de-
fined as

Vnm(ρ, θ) = Rnm · exp(−jmθ). (3)

Pseudo-Zernike moments are another sets of
orthogonal polynomials with similar properties to
Zernike polynomials. The psuedo-Zernike radial
polynomials are defined as:

Rnm(ρ) =
n−|m|∑
s=0

(−1)s (2n + 1− s)!ρn−s

s!(n + |m| − s)!(n + |m|+ 1− s)!
,

(4)
wheren ≥ 0 and0 ≤ |m| ≤ n. The two-dimensional
pseudo-Zernike moments can be defined similarly to
eq. 2 and are denoted asBnm.

To make both ZMs and PZMs of queryq repre-
senting scale invariant shape features, normalized pro-
jections vectors are used and the final feature vector
f(q) is the union of both ZMs and PZMs, i.e.,

fZM (q, n) = {Aij/A00|0 ≤ i ≤ n, i− |j| is even}
fPZM (q, n) = {Bij/B00|0 ≤ i ≤ n, |j| ≤ i},

f(q, n) = fZM
⋃

fPZM ,
(5)

where f(q, n) is rewritten as{fi}i=1,···,F for sim-
plicity andF is the vector dimension of feature, i.e.,
F = size(fZM ) + size(fPZM ).

Though ZMs and PZMs are similar but, in gen-
eral, PZMs are less sensitive to noises than are ZMs.

3 Preprocessing

Both ZMs and PZMs provide orientation invariant
feature for shapes. Both ZMs and PZMs are projec-
tions of signals representing shape content on a com-
plete set of complex-values functions orthogonal on

(a)

(a)

Figure 1: Shape description by (a) shape-contour and
(b) shape-region

the unit disk whose coordinates are{(x, y)|x2 + y2 ≤
1}. To achieve transition invariance, the coordinate
zero are moved to shape centroid, i.e.,(E[xi], E[yi]),
where (xi, yi)s belong to points of object shape. The
scale invariance is accomplished by enlarging or re-
ducing each shape such that its zero-th order mo-
ment equals to a predetermined value. Both pre-
processing steps are designed for discrimination of
different shapes or identification of the same shapes,
which are not quite the same when dealing with re-
trieval of similar shapes from image databases. For
this, we intend to accommodate shape content in im-
age with minimum bounding circle (MBC). We have
devised a fast algorithm for locating the MBC of shape
content, i.e., center and radius, which excludes erro-
neous noises, when computing ZMs and PZMs, out-
side the circle. Experiments show that shape features
computed with the MBC center do perform better in
similarity retrieval of shapes than do with shape cen-
troid. Note that with the MBC, the projections of
shape content on Zernike bases could be computed
efficiently, i.e., less computation time and less erro-
neous noises.

4 Similarity Retrieval

Shape feature sets are defined according to specific
database and user requirements. They are efficient
in similarity retrieval for their applications. Nonethe-
less, it’s clear there’s no one set of universal descrip-
tors could satisfy all requirements. In addition, users
may need specific combination of features for their
retrieval target, either query by multi-instance or rel-
evance feedback. Hence the query mechanism must
accommodate plural features sets while being flexi-
ble in selecting proper features to reflect user’s def-
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initions on shape similarity. Note that the target of
visual information retrieval is relative instead of abso-
lute similarity. We intend to measure similarity be-
tween samples in the supervised approach, such as
those in statistical space [6]. To reflect visual sim-
ilarity, the on-line learning mechanism should bring
up subjectively similar features among query samples
for refined query. For this, we propose to choose fea-
tures by boosting salient common ones to meet visual
similarity.

4.1 Distance Measure

To measure relative similarity between shape samples
in statistic space, the probability distribution of each
shape feature was modelled by gamma distribution
function with parametersα andβ:

p(fi; α, β) =
1

βαΓ(α)
fα−1

i exp(−fi)U(fi), (6)

whereΓ(α) =
∫ b
a xα−1e−xdx andU(fi) is the unit-

step function. The parameters,α andβ, could be com-

puted fromα = m2
i

σ2 andβ = σ2
i

mi
, wheremi andσi are

the mean and standard deviation of featurefis of all
images in database. Dissimilarity between feature val-
uesa andb thus could be measured by the following
probability distance:

P (a, b) =
∫ max(a,b)

min(a,b)
p(fi)dfi. (7)

4.2 Boosting Algorithm

The basic idea of boosting algorithm is to collect weak
hypotheses to form a single highly accurate prediction
rule. If weak hypotheses are slightly better than ran-
dom guessing, the error of the final hypothesis would
drops exponentially fast [9]. For shape-based similar-
ity retrieval, visual perception would appreciate global
instead of detailed shape contents in images [6]. This
boosting algorithm is thus designed to successively
select one highly deterministic feature among query
samples to output robust global classifier. The boost-
ing algorithm which is capable of dealing with image
shape features is described:

1. Inputs: (a) N query images,qii=1,2,···,N , and their
relevancy{si}i=1,2,···,N : (q1, s1),· · ·, (qN , sN );
(b) weak learning algorithmWeakLearn; (c) set
wi = 1 for i = 1, 2, · · · , F and integerT speci-
fying the number of iterations

2. Do fort = 1, 2, · · · , T :

2(a)

2(b)

2(c)

Figure 2: Locate weak classifiers by greedily cover-
ing, while excluding negative ones, possible salient
common features. The width of line denotes the
weighting of the corresponding sample.

• Get the distribution by:̂wt
i = wt

i∑N

i=1
wt

i

• Call function WeakLearn(ŵt) and return
one hypothesishj for each feature dimen-
sionj and compute its error

εj =
N∑

i=1

ŵt
i · |hj(xi)− yi|; (8)

• Setht(·) = hk(·), wherek is the dimension
index of features such that

εk = min{εj}j=1,...,F ; (9)

• Let βt = εt
1−εt

and set the new weight vec-
tor to be:

wt+1
i = wt

i · β1−|ht(xi)−yi|
t . (10)
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3. Output the hypothesis

h(x) =
T∑

t=1

(log
1
βt
· ht(x)) ≥ 1

2

T∑

t=1

(log
1
βt

).

(11)

The WeakLearn function is designed to locate the
decision boundaries for each hypothesis by finding
the minimum error with functionεj(mi) in eq. 7, in
whichmj = 1

N

∑N
i=1 fj(xi) and

hj(·) =

{
0, if P (fj(xi),mj) ≤ PT

1, otherwise
(12)

wherePT could be the constant threshold to determine
whether featuresj of two samples are relatively simi-
lar or not.

The boosting mechanism could be easily under-
stood with the aids of Fig. 2. WithPT specifying
the shaded region, the weaklearn hypotheses are de-
signed to accommodate salient common (converging)
features among query samples, such as feature of sam-
ples 1 and 2 with the hypothesishl(·) in Fig. 2 (a).
Excluded samples, such as samples 3, 4 and 5 in
Figs. 2 (a)(b), are weighted heavily to make them eas-
ily boosted thereafter. As seen in Fig. 2(b), feature m
of samples 3 and 5 are boosted and heavily weighted
sample 4 is then targeted. Possible hypothesis could
be as that shown in Fig. 2(c). The final strong hypoth-
esis is thus a greedy collection of deterministic weak
hypotheses. Note that only positive features are plot-
ted in Fig. 2. The weak hypothesis could accommo-
date negative samples as well.

5 Simulation Study

5.1 Evaluation Methods

When databases and categorization information In
general, it uses precision (AA+B ) and recall ( C

B+C ) to
evaluate the objective retrieval performance, where
(A + B) and (B + C) denote the number of rel-
evant samples and top-ranked retrieved samples for
evaluations, respectively, for one query. The retrieval
performances can be evaluated by displaying preci-
sion and recall graphs, which are usually inversely re-
lated. As shown in Fig. 5, improved retrieval perfor-
mances would yield much upper-right recall-precision
hit curves.

In addition to indicate how many of the cor-
rect samples are retrieved by the recall-precision hit
curves, the MPEG-7 retrieval metric, Normalized
Modified Retrieval Tank (NMRR) [12], also pro-
vide numerical measurements of how top-ranked the

correct samples are in the list of retrieved samples.
NMRR is defined by

NMRR(q) =
1

NG(q)

∑NG(q)
k=1 Rank(k)− 0.5 · [1 + NG(q)]

K(q)− 0.5 · [1 + NG(q)]
,

(13)
whereNG(q) denotes the size of the ground-truth set
of the query sampleq in the image databaseIDB ,
Rank(k) is the rank of thek-th ground-truth image in
the retrieved list andK(q) specify the relevance rank
for queryq. Since the size of each ground-truth set is
different,K(q) is determined by:

K(q) = min(4 ·NG(q), 2 ·GTM), (14)

whereGTM = max{NG(q)|q ∈ IDB}. Averaged
Normalized Modified Retrieval Rate (ANMRR) is the
average of NMRR for all queries:

ANMRR =
1

NQ

NQ∑

q=1

NMRR(q), (15)

where NQ is the number of queries. ANMRR is
another criterion used in measuring retrieval perfor-
mance of MPEG-7 related multimedia search en-
gine [12]. Experiments [13] showed evidences that
the ANMRR measure coincides linearly with subjec-
tive evaluation results in regard to the retrieval accu-
racy.

To obtain the ANMRR data form instance
queries, it performsCNG

m retrieval operations, i.e.,
evaluate retrieval performances in an exhaustive ap-
proach, and evaluates NMRR(q) for each query. The
total average ANMRR is computed over all ground-
truth set in the database.

5.2 Performance Evaluations

Two thousand images were collected in the test
database. They contain pattern, animal, insects, cup,
regular geometric shapes et al. Each image had
been processed in advance to segment the image fore-
ground. It then located the MBC of the shape re-
gion for normalization and feature extractions. Mag-
nitudes of ZMs and PZMs for each sample image
are computed by lookup-tables to speed up process-
ing of database images. With order n=10, the num-
ber of ZMs and PZMs are 36 and 66, respectively.
Fig. 3 shows the retrieval results of one query im-
age in the upper-left corner. The similarity ranking
is from left to right and up to down. In Fig. 3(a),
the retrieved shape images are not coherent in sub-
jective similarity since only one query image was
given. When one positive sampled were added for
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refined query, more visually similar shape were re-
trieved as shown in Fig. 3(b)(c). However, the pro-
posed algorithm (Fig. 3(c)) demonstrates better sub-
jective performances as compared to the mean feature
vector one (Fig. 3(b)). Given more positive samples,
the salient and common features were boosted by the
proposed algorithm and the retrieved results demon-
strate convergence toward subjective similarity very
well (Fig. 3(e)) as compared to that shown in Fig. 3(d).

For objective evaluations, the ANMRR perfor-
mance is demonstrated in Fig. 4. As shown the aver-
aged ranks of ground-truth sets are about 15% to 17%
lower than that of the mean-feature vector. The PR hit
curves, averaged over all the ground-truth sets in IDB,
of the proposed algorithm and the mean vector method
are shown in Fig. 5. Note that images of the same cat-
egory may not all subjectively similar to others such
that the precision-recall performance would not out-
perform the other, as compared to the subjective eval-
uation. The retrieval performance of the proposed al-
gorithm outperform the other when more query sam-
ples are provided. As shown in Fig. 5, the boosting
method yield more upper-right curves, as compared to
the mean-feature vector ones, when more query sam-
ples are provided.

6 Conclusions

We presented a shape-based similarity retrieval for
image databases, which boosts salient common fea-
tures among query samples successively. The selected
weak classifiers actively locate converging features
of positive samples while excludes passively nega-
tive ones. The most distinguished functionality of the
proposed method is that visual similarities could be
targeted well from multiple sets of features. In ad-
dition, the time complexity had been reduced about
20 times smaller as compared to previous methods.
Experiments showed that the retrieved results by the
proposed method provide satisfactory subjective re-
trieval performance. Objective evaluations, ANMRR
and precision-recall hit curves, also demonstrate im-
proved retrieval ranks and precisions. With the pro-
posed mechanism, new feature types could be directly
accommodated for specific applications to enhance
the retrieval performance, which is considered as the
future work.
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