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Abstract: This work builds up a complete procedure of using factor analysis as the instrument in the case of relaxing 
the assumption of the classical model. Paper is focused on the situation when the multicolinearity appears as the 
dominant problem. This problem is solved by grouping of performance indicators, not only by technical principles, but 
also according to fundamental postulates of business economic theory. The whole procedure is illustrated by a 
practical example. The example originates from the real need to analyse and compare the performance of all 
manufacturing enterprises in the Split-Dalmatian County in 2004. The data set consists of a wide range of performance 
indicators for 1744 manufacturing enterprises, among which twelve are selected as representative ones. As the entire 
basic set is the issue of our interest, we find that the enterprises are markedly heterogeneous in terms of the chosen 
indicators. Therefore previous to comparison they have to be made homogeneous. After such homogenization, using 
principal components method four factors have been extracted, i.e. all selected variables (performance indicators) have 
been meaningfully grouped in to factors: activity, liquidity, leverage, economic efficiency. The essential part of 
analysis is establishing of direct, indirect and overall effects of each independent variable on return on equity as 
chosen dependent variable. 
 
Key-Words: factor analysis, orthogonal rotation, principal component method, multiple regression analysis, stepwise 
selection, multicolinearity, direct and indirect effects on dependent variable 

1   Introduction 
Central model of the paper is created in response to a real 
needs for performance analysis and comparison of all 
productive enterprises in Split-Dalmatian County. In 
2004 there have been 1744 manufacturing enterprises in 
that area. 

Knowing that the general problem of enterprises in 
transition is unfavourable structure of capital and 
liabilities as a source of financing the assets, it was 
necessary to homogenizated the entire set of 
manufacturing enterprises. 

Starting modelling for this purpose all enterprises 
with:  

- zero employees,   
- zero equity and 
- net profit zero and less than zero, 

have been excluded from further analysis. So, after that 
homogenization the modelling has been continued with 
405 manufacturing enterprises. This is supported by the 
economic theory as well as by practical experience of the 
countries in transition. 

Among wide range of performance indicators twelve 
of them have been extracted as inevitable on different 
levels of decision making.  
 
 

2   Stepwise variables selection 
Subset of chosen performance indicators has been taken 
among items from the balance sheet, which is legally 
defined: 

- X1 total asset turnover, 
- X2 current asset turnover, 
- X3 fixed asset turnover, 
- X4 revenue per employee, 
- X5 average daily revenue, 
- X6 current liquidity, 
- X7 fixed asset to long term liabilities, 
- X8 equity to total asset, 
- X9 revenues over expenses, 
- X10 expenses per employee, 
- X11 earnings per employee, 
- X12 equity per employee. 

As the most representative indicator of profitability - 
return on equity is defined as dependent variable of the 
model: 

40521
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ββ .  (1) 

In determining direct relative effect of each 
independent variable on return on equity, multiple 
regression model with all variables is used. 

Estimation output looks like it follows: 
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Table 1. 
Multiple Regression Model Estimation 

 

Model Summary f

,882a ,779 ,778 ,443223 ,779 1416,711 1 403 ,000

,901b ,813 ,812 ,408166 ,034 73,200 1 402 ,000

,924c ,853 ,852 ,361432 ,041 111,680 1 401 ,000

,931d ,867 ,866 ,344479 ,014 41,439 1 400 ,000

,933e ,871 ,869 ,340393 ,003 10,661 1 399 ,001 1,695

Model
1

2

3

4

5

R R Square
Adjusted R

Square
Std. Error of
the Estimate

R Square
Change F Change df1 df2 Sig. F Change

Change Statistics

Durbin-Watson

Predictors: (Constant), X5a. 

Predictors: (Constant), X5, X9b. 

Predictors: (Constant), X5, X9, X8c. 

Predictors: (Constant), X5, X9, X8, X1d. 

Predictors: (Constant), X5, X9, X8, X1, X12e. 

Dependent Variable: Yf. 

 
Source: According to FINA data base 
 

Table 2. 
Parameter Estimation by Stepwise Selection 

Coefficients a

,242 ,022 10,895 ,000

1,55E-006 ,000 ,882 37,639 ,000

-1,438 ,197 -7,284 ,000

1,46E-006 ,000 ,828 36,808 ,000

1,566 ,183 ,192 8,556 ,000

-1,776 ,178 -9,994 ,000

1,41E-006 ,000 ,803 40,028 ,000

2,138 ,171 ,263 12,510 ,000

-,870 ,082 -,213 -10,568 ,000

-2,025 ,174 -11,655 ,000

1,41E-006 ,000 ,800 41,847 ,000

2,195 ,163 ,270 13,456 ,000

-,860 ,079 -,211 -10,958 ,000

,121 ,019 ,118 6,437 ,000

-1,994 ,172 -11,602 ,000

1,42E-006 ,000 ,806 42,470 ,000

2,177 ,161 ,268 13,498 ,000

-,773 ,082 -,189 -9,408 ,000

,108 ,019 ,105 5,716 ,000

-1,58E-007 ,000 -,064 -3,265 ,001

(Constant)

X5

(Constant)

X5

X9

(Constant)

X5

X9

X8

(Constant)

X5

X9

X8

X1

(Constant)

X5

X9

X8

X1

X12

Model
1

2

3

4

5

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Ya. 

 
Source: According to FINA data base 
 
It is evident that all variables are not statistically 
significant using stepwise method. Namely, only five 
variables (Table 2.) are left in the model satisfying 
condition for p value less than 0.05 to be entered and p 
value not greater than 0.10 to be removed from the 
equation. Also from correlation matrix (Table 3.) among 
all performance indicators it can bee seen that 
multicolinearity problem exists. By testing bivariate 
correlation coefficient, using one tailed test, for almost 30 

correlation coefficients empirical significance is less than 
0.05. Moreover Farrar-Glauber test has confirmed that 
multicolinearity appears as serious problem.  

According that, determinant of correlation matrix is 
near singular (close to zero), which is evidence that it can 
not be accepted hypothesis that correlation matrix is 
identity matrix. In such cases, most appropriate statistical 
– mathematical procedure, for solving this problem, is to 
reduce many observed variables in less number of 
underlying variables which are called factors. Each factor 
represents linear combination of variables with similar 
characteristics by factor loadings or standardized weights. 
It means that factor analysis enables for "removed" 
independent variables to be indirectly regressed on 
dependent variable trough factors.  

 
 

3   Factor Analysis 
Factor analysis is used to find underlying variables or 
factors among observed variables. In other words, if 
multicolinearity exist among these variables, factor 
analysis can be used to solve it. In such way all direct and 
indirect effects of each independent variable on regresand 
variable can be measured. The procedure is taken up 
throught three stages: 

- examination if correlation matrix can be factorized 
and if there exist high degree of common variance that 
can be explained, 

- extraction of optimal factors (components) as linear 
combination of observed variables, 

- orthogonal rotation of factors in order to maximize 
the relationship between the variables. 

Basis of factor analysis is variance-covariance matrix 
of independent observed variables, i.e. it is assumed that 
variance between each two variables can be decomposed. 
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Table 3. 
Correlation Matrix a

1,000 ,602 -,007 ,018 ,007 -,085 -,012 -,039 -,059 ,022 -,042 -,202

,602 1,000 -,035 -,008 ,140 -,203 ,126 ,061 ,027 -,015 ,078 -,106

-,007 -,035 1,000 ,007 -,005 ,006 -,036 -,044 -,018 ,008 -,011 -,013

,018 -,008 ,007 1,000 ,107 ,034 -,016 -,048 -,008 ,997 ,515 ,557

,007 ,140 -,005 ,107 1,000 -,015 ,022 -,025 ,282 ,075 ,447 ,070

-,085 -,203 ,006 ,034 -,015 1,000 -,253 ,457 ,261 ,004 ,314 ,209

-,012 ,126 -,036 -,016 ,022 -,253 1,000 -,346 -,133 -,007 -,095 -,077

-,039 ,061 -,044 -,048 -,025 ,457 -,346 1,000 ,297 -,070 ,211 ,332

-,059 ,027 -,018 -,008 ,282 ,261 -,133 ,297 1,000 -,068 ,643 ,102

,022 -,015 ,008 ,997 ,075 ,004 -,007 -,070 -,068 1,000 ,445 ,547

-,042 ,078 -,011 ,515 ,447 ,314 -,095 ,211 ,643 ,445 1,000 ,415

-,202 -,106 -,013 ,557 ,070 ,209 -,077 ,332 ,102 ,547 ,415 1,000

,000 ,443 ,357 ,447 ,043 ,403 ,216 ,117 ,327 ,200 ,000

,000 ,241 ,433 ,002 ,000 ,006 ,109 ,292 ,382 ,059 ,016

,443 ,241 ,447 ,462 ,454 ,232 ,190 ,360 ,437 ,414 ,400

,357 ,433 ,447 ,016 ,249 ,371 ,166 ,434 ,000 ,000 ,000

,447 ,002 ,462 ,016 ,381 ,328 ,310 ,000 ,066 ,000 ,079

,043 ,000 ,454 ,249 ,381 ,000 ,000 ,000 ,468 ,000 ,000

,403 ,006 ,232 ,371 ,328 ,000 ,000 ,004 ,441 ,028 ,061

,216 ,109 ,190 ,166 ,310 ,000 ,000 ,000 ,079 ,000 ,000

,117 ,292 ,360 ,434 ,000 ,000 ,004 ,000 ,086 ,000 ,020

,327 ,382 ,437 ,000 ,066 ,468 ,441 ,079 ,086 ,000 ,000

,200 ,059 ,414 ,000 ,000 ,000 ,028 ,000 ,000 ,000 ,000

,000 ,016 ,400 ,000 ,079 ,000 ,061 ,000 ,020 ,000 ,000

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

Correlation

Sig. (1-tailed)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Determinant = 2,30E-006a. 

 
Source: According to FINA data base 

 
Variance of independent variables can be divided into 

common variance (communality), which explains their 
intercorrelation, and specific variance, which can not be 
explained. Unexplained variance usually includes error 
variance caused by measurement error. 

For testing if correlation matrix can be factorized 
usually is used Bartletts test, examining determinant of its 
matrix (Table 4.). Hypotheses in this case are set up as:     

IR...:H
IR...:H

≠
=

1

0  

where: R is correlation matrix and  
            I  is identity matrix. 
It can be accepted alternative hypothesis if empirical 
significance level is less than 0.05, i.e. correlation matrix 
is not identity matrix. Therefore, it can be factorized. 
Table 4.  

KMO and Bartlett's Test

,568

5182,870

66

,000

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

Approx. Chi-Square

df

Sig.

Bartlett's Test of Sphericity

 
Source: According to FINA data base 

Kaiser-Meyer-Olkin indicator above 0.5 is satisfactory, 
i.e. there exist high degree of common variations between 
variables that can be explained. 

In this paper correlation matrix will be factorized 
using principal component method. 

The main question is which variables will be grouped 
into which factors? 

It is assumed that the 12 observed variables (the iX ) 
that have been measured for each of the k  subjects 
(enterprises) have been standardized and represented in 
following form: 

1212112112

221212

111111

...
...
...
...

eFaFaX

eFaFaX
eFaFaX

mm

mm

mm

+++=

+++=
+++=

   (3) 

The jF  are the m  common factors, the ie  are the 12 
specific errors, and the ija  are the m×12  factor loadings. 
The jF  have mean zero and standard deviation one, and 
are generally assumed to be independent. The ie  are also 
independent and the jF  and ie  are mutually independent 
of each other. 
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Table 5.  
 Eigenvalues Values of Correlation Matrix and Total Variance Explained 

Total Variance Explained

3,037 25,312 25,312 3,037 25,312 25,312 2,645 22,039 22,039

2,027 16,892 42,204 2,027 16,892 42,204 1,944 16,196 38,235

1,723 14,361 56,565 1,723 14,361 56,565 1,852 15,435 53,670

1,305 10,874 67,438 1,305 10,874 67,438 1,652 13,769 67,438

1,013 8,446 75,884

,802 6,683 82,567

,690 5,751 88,318

,611 5,095 93,413

,337 2,812 96,225

,300 2,500 98,725

,153 1,274 100,000

3,12E-005 ,000 100,000

Component
1

2

3

4

5

6

7

8

9

10

11

12

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.

 
Source: According to correlation matrix in Table 3. 

 
In matrix form system of equations in expression (3), for 

km < , can be written as: 
112112112 ×××× += eFAX mm ,   (4) 

which is equivalent to: 
)cov(eAAR T += ,     (5) 

where 1212×R  is correlation matrix of 112×X . Since the 
errors are assumed to be independent, )cov(e  should be a 

1212×  diagonal matrix. This implies that: 

ieVaraXVar i

m

j
iji ∀+∑=

=
),()(

1

2 .   (6) 

The sum of iX 's squared factor loadings is called its 
communality (the variance it has in common with the 
other variables through the common factors). The thi  
error variance is called the specificity of iX  (the variance 
that is specific to variable i ). 

Now factors can be extracted from correlation matrix 
by solving characteristic equation as follows: 

( ) 0=⋅− IRdet Λ     (7) 
By solving above equation we gets eigenvalues of 
correlation matrix k,...,2,1ii =λ , where k is number of 
variables. 

Each eigenvalue shows part of variance that can be 
explained by each factor. So, usually each eigenvalue is 
expressed relatively on the number of variables, as: 

k,...,,i
trR

i 21=λ      (8) 

It can be seen that trace of correlation matrix equals k 
variables, because all diagonal elements of correlation 
matrix are ones. 

By Keiser criteria it is necessary to extract only 
factors with eigenvalues greater than one, which 
cumulative explains more than 60% of total variance. In 

our case optimal number factors to extract is four factors 
(Table 5.). 

After estimation of factor loadings it is necessary to 
examine their significance. In empirical research usually 
factor loadings (given in standardized units) above 

04.0±  are statistically significant, because they explain 
more than 16% of variance. At the end it is used Kaiser 
Varimax method of orthogonal rotation factor axis to get 
more meaningful grouping of variables and to ensure 
independence between factors (Table 6.). 
Table 6. 

Rotated Component Matrix a

,974    

,973    

,706    

 ,829   

 ,717   

 -,646   

  ,791  

,484  ,768  

  ,750  

   ,887

   ,887

   ,396

X4

X10

X12

X8

X6

X7

X9

X11

X5

X1

X2

X3

1 2 3 4

Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 

 
 Source: According to FINA data base 

 
From Table 6. it is evident that variables X4, X10 

and X12 are grouped into factor 1. All this variables 
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belong to the same category of economic indicators - 
economic efficiency indicators. 

Variables X6, X7 and X8 are grouped into factor 2 - 
category of liquidity indicators.  

Variables X5, X9 and X11 are grouped into factor 3 -
category of leverage indicators.  

Variables X1, X2 and X3 are grouped into factor 4 -
category of activity indicators. 

 
 

4   Direct and Indirect Effects Estimation 
After calculating factor scores for each linear 
combination, the same are used in regression with return 
on equity as dependent variable: 

44332211 FFFFŷi ⋅+⋅+⋅+⋅= φφφφ ,  (9) 
where in this model: 

iŷ  is expected standardized value of return on equity 
(dependent variable), 

iφ  is estimated parameter for factor i and 

iF  is adequate factor score. 
Table 7. 

Model Summaryb

,841a ,708 ,705 ,54324404 1,767
Model
1

R R Square
Adjusted R

Square
Std. Error of
the Estimate Durbin-Watson

Predictors: (Constant), FA4, FA3, FA2, FA1a. 

Dependent Variable: Zb. 

 
Source: According to FINA data base 
Table 8. 

ANOVAb

285,954 4 71,489 242,241 ,000a

118,046 400 ,295

404,000 404

Regression

Residual

Total

Model
1

Sum of Squares df Mean Square F Sig.

Predictors: (Constant), FA4, FA3, FA2, FA1a. 

Dependent Variable: Zb. 

 
Source: According to FINA data base 
Table 9. 

Coefficientsa

-,034 ,027 -,034 -2,645 ,045

-,267 ,027 -,267 -9,868 ,000

,779 ,027 ,779 28,832 ,000

,168 ,027 ,168 6,222 ,000

FA1

FA2

FA3

FA4

Model B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Za. 

 
Source: According to FINA data base 
 

In Tables 7., 8. and 9. complete multiple regression 
diagnostics with incorporated factor analysis results is 
shown. It is evident that in this model all economic-
theoretical, econometrics and statistical criteria are 
significant. Especially, by meaningful grouping of 
variables the problem of multicolinearity is solved. 

Simultaneously, estimated parameters are remained 
consistent. Even without testing it is obvious from factor 
correlation matrix (Table 10.), that multicolinearity 
disappears. 
Table 10. 

Coefficient Correlations a

1,000 ,000 ,000 ,000

,000 1,000 ,000 ,000

,000 ,000 1,000 ,000

,000 ,000 ,000 1,000

FA4

FA3

FA2

FA1

Correlations
Model
1

FA4 FA3 FA2 FA1

Dependent Variable: Za. 

 
Source: According to FINA data base 
 
 
5   Conclusion Remarks 
Indirect effects are calculated by appropriate factor 
parameters iφ  and adequate factor loading from rotated 
component matrix. It is obvious that indirect effects are 
not negligible (as X11 - earnings per employee in the 
Table 11.). Exactly this proves that any variable must not 
be removed from the model, as multicolinearity factor, 
because its indirect effects on the dependent variable can 
be very significant. Result of using standard statistical-
econometric methods (as stepwise technique is in this 
example) is excluding a numerous variables with 
significant influence on dependent variable. Even more, 
multicolinearity becomes a barrier for specification of 
any influence of "removed" variables. 

Indirect effects must not be ignored, because of their 
significant total impact. From the Table 11. it is obvious 
that the total effect can contain the higher proportion of 
the indirect than of the direct effects. 
Table 11.  

Total Effects Estimation 

Indicators
Direct 
Effect

Indirect 
Effect Total Effect Rank

X5 0,806 0,584 1,390 1
X9 0,268 0,616 0,884 2
X8 -0,189 -0,221 -0,410 4
X1 0,105 0,149 0,254 5

X12 -0,064 0,119 0,055 10
X10 0 -0,033 -0,033 12
X4 0 -0,033 -0,033 11
X6 0 -0,191 -0,191 6
X7 0 0,172 0,172 7

X11 0 0,598 0,598 3
X2 0 0,149 0,149 8
X3 0 0,067 0,067 9  

Source: According to FINA data base 
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This is especially relevant in the cases of analyzing total 
effects of the highest ranking variables, such as in this 
case X9, X1 and X12. 

Furthermore, the additional advantage of factor 
analysis is the fact that all information are included in 
research through only a few factors. 

This paper reveals how relaxing the assumptions of 
the classical model can be solved by meaningful 
grouping of variables using factor analysis. 

Even more factor analysis helps to specify all kinds 
of effects of each explanatory variable on dependent one, 
which was basic aim of this paper. 
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