
Derivative Contracts as Active Documents
Component-Orientation meets Financial Modeling

Markus Reitz∗
University of Kaiserslautern
Software Technology Group

P.O. Box 3049, 67653 Kaiserslautern
Germany

r

Ulrich Nögel∗
Fraunhofer ITWM

Department of Financial Mathematics
Fraunhofer-Platz 1, 67663 Kaiserslautern

Germany
e

Abstract: Derivative contracts represent a very important and constantly growing financial segment of local and
world-wide markets. To assure or even improve one’s position in an environment characterised by permanently
shortening product life and time to market cycles, global as well as local market players have to optimise the
overall product design process. The inherent flexibility of derivatives creates both: nearly unbounded opportunities
for new and innovative contracts and the pressure to use efficient methods for contract composition, processing,
management and valuation. Techniques based on the concept of an A D, a component-oriented
approach, are able to offer novel solutions for these problems. This paper discusses A D in the
context of derivatives, sketches possible benefits when compared to state of the practice techniques and outlines
new scenarios for ingenious usage of the added value of A D systems.

Key–Words: Active Documents, Derivative Contracts, Component-Orientation, Financial Engineering, Java, XML

1 Introduction
To cope with the problems resulting from permanently
shortening product development cycles, financial en-
gineers need new design methodologies and software-
based supportive technologies. CDC1 aims at
providing means to generically compose, check and
store derivative contracts, using an A D
based representation technique whose level of ab-
straction is above that of plain mathematical formu-
lae. Based on this abstraction, structural as well as
semantical consistency checks are available, freeing
the financial engineer from mind-numbing tasks, let-
ting him concentrate on the really creative aspects of
the design process. Besides those checks, the addi-
tional information provided by this abstraction may
be used to automatically construct effective valuation
algorithms for derivative contracts, too. Depending on
the specific contract, the supporting framework is able
to select the best matching valuation algorithm for fair
price calculations. To be of practical relevance, the
approach has to offer both:

1. Backwards Compatibility, i.e. existing deriva-

∗Supported by the cluster of excellence Dependable Adaptive
Systems and Mathematical Modeling (DASMOD) of Rhineland-
Palatinate, Germany.

1Composable Derivative Contracts, a subproject of DASMOD
(http://www.dasmod.de).

tives should be expressible in terms of the ap-
proach, and

2. Openness, i.e. properties and features of next
generation derivatives should be modelable ef-
fectively.

Component-oriented technologies, manifested in
the A D framework, are applied to the
domain of financial modeling, transferring their im-
manent flexibility to derivative contracts. Any deriva-
tive contract may be expressed in terms of such a doc-
ument, whereas in this context, the term active refers
to

• the ability to automatically check and enforce
consistency constraints, i.e. avoid invalid or
meaningless contracts.

• the ability to automatically perform context-
specific adaptations, e.g. find the best-matching
valuation algorithm.

This paper introduces the overall concepts of
CDC, gives an overview of the project and
sketches questions that will be investigated in forth-
coming working packages.

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Business & Economics, Cavtat, Croatia, June 13-15, 2006 (pp13-18)

2 Related Work
AD are an evolutionary continuation of
compound document technologies. Introduced with
Microsoft OLE and further refined in COM [1], a
compound document is able to combine different me-
dia data types and allows for in-place editing. Apple’s
OpenDoc [2] aimed at providing a multi-platform
framework, but the attempt was not crowned with suc-
cess. Starting with Mac OS X, OpenDoc has been de-
clared a deprecated technology and is no longer sup-
ported. Minerva [3] introduced the notion of an A-
 D in the context of e-Learning during the
Easycomp project [4]. CDC as well as the un-
derlying framework for general-purpose A D-
 are based on the insights and results of this
EU-funded research.

3 A D
When modeling derivative contracts, the general-
purpose framework is specialised towards a specific
variant, Hierarchical A D, which is
used for contract representation by the runtime sys-
tem. Being hierarchical, derivative contracts and their
corresponding A D representation may
be expressed in a XML-based format.

Example 1 Figure 1 represents a derivative contract
C having a payoff of

PC(t) =

{
min(max(FOO(t) − 12, 10), 20) t = 7
unknown otherwise

The transformation from PC to P̂C , so

∀t ≤ MATURITY(C) : P̂C(t) � unknown

holds, is performed by an appropriate valuation pro-
cess whose internals are described in Section 4.

For Hierarchical A D, additional
constraints for the principal entities environment and
component have to be taken into account:

• An environment embeds at most one component
and an arbitrary number of environments.

• Environments enforce the local messages only
constraint, i.e. only intra-environmental mes-
sages may pass environmental boundaries.

Using XML as an intermediate representation,
document interchanging and transformation could be
performed using standard technologies, e.g. XML
Schema or XSL. Besides graphical derivative develop-
ment environments, simple text editors may be used to
handle contracts, because of a textual representation.

Mathematical Assembler Implementing a contract
with the help of mathematical formulae is similar to
programming in low-level assembler, missing all the
bells and whistles of modern programming languages,
e.g. types. Moving from a hard-coded implementa-
tion based on pure mathematical descriptions to A-
 D is comparable to the transition from
assembly language to a high-level programming lan-
guage. The supporting framework provides similar
or analogous features a conventional IDE offers to its
users2.

3.1 Advantages
For decades, financial engineers have designed and
analysed derivative contracts using plain mathemati-
cal formulae and have done well using straightforward
description techniques - so why switch over to A
D? The answer is quite simple: With in-
creasing complexity and decreasing turnaround time,
current low-level description techniques do not scale
up well, limiting the set of handleable contracts and
usage scenarios.

Being a loosely coupled system, A D-
 offer a high degree of flexibility and extensibil-
ity. For example, to support smoothing based on the
geometric mean besides the already available smooth-
ing using the arithmetic mean, adding a specific com-
ponent is sufficient. All parts of the system, e.g. val-
uation and composition facilities, are made aware of
the improved feature set automatically.

Because of component-orientation, every user is
able to configure the system according to specific
needs by adapting the general-purpose system ade-
quately. Reinventing the wheel for every contract by
specifically developing composition and valuation fa-
cilities for each category is unnecessary because of the
provided genericity. System adaptation according to
individual user requirements is therefore simple.

Structural and semantical checking facilities opti-
mise the design process and help to evaluate a contract
in its early design stage using explorative composition
techniques.

3.2 From simple to complex contracts
Any derivative contract can be defined by its payoff
and additional information concerning the conditions
that allow to exercise it, e.g. european or american
style derivatives. Because of the tremendous high de-
gree of flexibility3, a payoff may be as simple as in

2From the perspective of a general-purpose A D
framework, an IDE is a special kind of A D, too.

3"With derivatives you can have almost any payoff pattern you
want. If you can draw it on paper, or describe it in words, someone

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Business & Economics, Cavtat, Croatia, June 13-15, 2006 (pp13-18)

< c o n t r a c t>
<cap u s i n g=" upperBound ">
< c o n s t a n t i d=" upperBound " v a l u e=" 20 " / >
< f l o o r u s i n g=" lowerBound ">
< c o n s t a n t i d=" lowerBound " v a l u e=" 10 " / >
< d e r i v a t i v e>
< s e l l>
< c o n d i t i o n>
< a t t i m e s t e p=" 7 " />

< / c o n d i t i o n>
<o b s e r v a b l e i d=" foo " model="FOO" / >

< / s e l l>
<a c q u i r e>
< c o n d i t i o n>
< a t t i m e s t e p=" 0 " />

< / c o n d i t i o n>
< c o n s t a n t i d=" s t r i k e " v a l u e=" 12 " / >

< / a c q u i r e>
< / d e r i v a t i v e>

< / f l o o r>
< / cap>

< / c o n t r a c t>

cap

contract

constant

floor

......

Figure 1: A serialised contract representing a derivative
based on the underlying FOO, whose value is limited by an
upper bound of 20 and a lower bound of 10 monetary units.
The underlying is acquired virtually at timestep 0 and sold
virtually at timestep 7.

Figure 2: Instantiation of the contract on the left (boxes
represent environments). Because of the local messages
only constraint, a specific message propagation scheme,
e.g. only messages from the contract component reach the
cap component, is guaranteed by the runtime system.

the case of a plain vanilla european call option having
a strike of K and maturity T

P(T) = max(S (T) − K, 0)

or as complex as in the case of a globally capped and
floored cliquet (0 ≤ t1 ≤ t2 · · · ≤ tn = T)

P(T) =


n∑

i=1

max

(
min

(
S (ti) − S (ti−1)

S (ti)
, F

)
,C

)
+

Cliquet options belong to the class of structured
options, being part of a new generation of highly com-
plex OTC4 products, whose importance will increase
in the future. Construction and pricing of this and
other classes of options are complex and tedious tasks
that are simplified by A D technologies.

3.3 Contract Composition
A D may be instantiated from a valid
XML description, but when designing new contracts,
interactive and feedback-driven design techniques are
superior to their non-interactive counterparts. An ex-
plorative design style is supported and enforced, cre-
ating the need for a (at least) three-valued classifica-
tion scheme in contrast to non-interactive design pro-
cesses.

Consistent States represent all circumstances, which
are valid according to the composition specifica-
tion.

can design a derivative that gives you that payoff." (Fischer Black,
1995)

4Over The Counter, i.e. a derivative is specifically tailored
according to individual customer requirements.

Transitional States represent all situations, in which
the composition specification is violated, but cer-
tain constructive, i.e. additive, operations per-
formed by the A D would result in
a consistent state.

Inconsistent States represent all circumstances,
which are invalid according to the composition
specification. In inconsistent state, only destruc-
tive operations, i.e. operations that remove parts
of the A D, are allowed, as these
lead to transitional or consistent states.

As the runtime system enforces the composition
specification, it is impossible to transform a valid,
i.e. consistent or transitional A D into
an inconsistent one (see Figure 3). Directly manip-
ulating serialised contracts, i.e. circumventing con-
straint checking, is the only possibility to create incon-
sistent A D, leading to constraint viola-
tions during the instantiation phase.

3.3.1 Composition Constraints

By letting only reasonable contracts pass, composi-
tion constraints inhibit invalid and counterproductive
composition attempts. Using higher level description
techniques, many kinds of inconsistencies can be eas-
ily detected.

Example 2 The payoff of a contract based on the
given example with values of upper and lower bound
accidently interchanged would be

PC(T) = min(max(FOO(T) − 12, 20), 10) = 10

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Business & Economics, Cavtat, Croatia, June 13-15, 2006 (pp13-18)

Derivative
Contract Component

Repository

Adding a ca
p

Adding the

upper bound

Figure 3: A contract in a consistent state is signaled by a green background (depending on the context, an empty condition
defaults to timestep T or 0). Starting from a floored contract, e.g. made available by a contract repository, a cap component
is added using an appropriate drag and drop gesture. The resulting contract is in transitional state, indicated by a yellow
background. By defining the cap’s upper bound, the contract is completed, leading to a consistent state again.

which is independent from the underlying’s perfor-
mance and in almost any case not the intended design.

Example 3 An unintentionally double-floored con-
tract could be detected and marked as erroneous or
transformed to the optimised version

lowerBound = max(lowerBound1, lowerBound2)

Keep in mind that these examples are simple for
illustration purposes only; real world contracts may
exhibit a high degree of complexity, making general-
purpose semantic checking facilities a valuable prop-
erty of A D. With CDC also tar-
geting the non-expert user as a contract designer (see
Section 5), semantic checking becomes an essential
aspect of the composition tool-chain.

3.4 Component Repository
The lynchpin of a derivative contract composition sys-
tem is its component repository, which subsumes all
building blocks available for contract design. By com-
bining these pieces, the user is able to create consis-
tent and semantical meaningful derivative contracts.
As an essential aspect of an A D sys-
tem is its openness with respect to future extensions,
it is impossible to provide static composition specifi-
cations. Instead, a derivative contract component has
to provide modular specification information, which
describe the component’s relation to other entities in a
local as well as in a system-wide manner.

By combining these results, the runtime system is
able to create a finalised document specification out
of all available specification fragments. It should be
obvious that the result of this process is dependent on
the current component repository configuration, i.e. a
customised specification is created.

4 Contract Valuation
Fair price calculations in conjunction with risk man-
agement decisions for derivative securities represent
two of the most important topics in modern finance.
Common mathematical approaches for solving the
pricing problem can be assigned to one of three cat-
egories.

1. Closed-form Solutions provide analytical fair
price formulae for a limited set of types of deriva-
tives and models (see e.g. [5]). The lack of a
general-purpose framework of closed-form solu-
tions is compensated by the fact that only a min-
imal amount of computational resources is usu-
ally required.

2. Monte Carlo Simulations represent a nearly
general-purpose and easy to understand approach
for pricing a large amount of types of derivatives.
Unfortunately, simulation is computationally in-
tensive and does not provide a straightforward
possibility to price american style derivatives.

3. Tree-based Algorithms allow for price calcu-
lations for european and american style deriva-
tives, therefore offering a general-purpose frame-
work for contract valuation. In contrast to Monte
Carlo simulations, tree algorithms usually show
up fast convergence, but in multi-dimensional
settings, the memory footprint may impose limi-
tations.

Categorisation scheme To provide a flexible and
efficient valuation engine, a categorisation scheme,
which is able to detect the applicability of closed-form
solutions when appropriate, use tree-based algorithms
in the common case and provide Monte Carlo simu-
lations as an additional method, has to be developed.

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Business & Economics, Cavtat, Croatia, June 13-15, 2006 (pp13-18)

Interact Valuation
Engine

Model
Repository

Algorithm
Repository

Component
Repository

Contract
Repository

Template
Repository

Specification

Active Document Runtime System

Composition
Facilities

C
on

tr
ac

t

Compose

Check

Instantiate

Check

Constraint
RepositoryDefine

Enforce

Check

Figure 4: A conceptual overview of the software system that is developed as part of CDC. The AD runtime
system acts as a kind of middleware, providing the necessary services to support composition and valuation.

The meta-information necessary to perform this adap-
tation process is provided by the A D
representing the financial contract.

Multi-dimensional tree algorithms Because the
sketched usage scenario allows for derivatives based
on multiple underlyings, computationally efficient
multi-dimensional tree algorithms have to be in-
vented. This development is based on the results of
[6] which are derived from [7], providing efficient and
fast converging algorithms.

4.1 Models
Modeling an european plain vanilla option by assum-
ing the applicability of geometric brownian motion
with constant volatility σ for its underlying by Black
& Scholes [8] (respectively Merton [9]) in 1973 led
to the first closed-form solution. Until now, ongoing
research has come up with closed-form solutions for
a large amount of types of derivatives (see e.g. [5]).
Albeit being used as a market standard, the famous
Black-Scholes model reaches its limits in case of com-
plex derivative contracts (see [10], [11] and references
therein) and is therefore only one of a plethora of mod-
els a general-purpose pricing engine has to provide
and handle. In addition to the Black-Scholes model, at
least local and stochastic volatility models will have
to be integrated into the core valuation engine.

4.2 Component-Oriented Valuation
Component-oriented design principles, the founda-
tion of the A D system, are dominat-
ing the valuation engine architecture, too. In con-
trast to the common approach of hard-coding all imag-
inable meaningful combinations of derivatives and
models, resulting in large refactoring and reimple-
mentation efforts in case of feature enhancement re-
quests, the flexible generic pricing engine allows for
easy extensions using components. Componentised

algorithms and models are subsumed in the engine’s
repository. As the pricing engine is able to select the
best-fitting modus operandi for fair price calculations
from its repository according to the meta-information
provided by the A D system, it is able to
cope with almost arbitrary complex contracts.

Combining both, A D technology
for easy composition of contracts and component-
oriented valuation for efficient and flexible fair price
calculations, provides all ingredients for the next gen-
eration tool chain for derivative contract construction.

5 Towards new horizons

A D technology enhances standard
derivative design processes, which represent a large
part of everyday work of any financial engineer. The
impact of A D is not limited to the
workflow of CDC’s primary audience - the fol-
lowing paragraphs present a selection of applications
beyond this use case.

5.1 Personalised Derivative Contracts
With derivatives being a traditional OTC product, the
participating parties are formed by financially strong
investors, e.g. institutional or hedgefond managers,
because usual OTC is only cost-effective in case of
large-scale financial investments. During the last
years, the growing interest of small and medium in-
vestors for alternatives to shares and bonds has been
blocked by the financial barrier formed by the high de-
sign costs of individual designed products, preventing
OTC to become an option for small and medium-scale
investments.

With CDC, the financial barrier is lowered
significantly, making OTC a realistic alternative to
already available semi-individual financial products.
The customer’s phase of influence is expanded into the
contract design process, because the customer him-

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Business & Economics, Cavtat, Croatia, June 13-15, 2006 (pp13-18)

self is able to design autonomously5. The A
D system used to implement CDC su-
pervises the design process by providing the set of
composition operators and components for contract
construction, additionally enforcing composition con-
straints. Effects of contract changes are instantaneous,
enabling easy composition of contracts until complete
conformance to individual demands is reached. Con-
tract negotiation and design become interactive and
explorative because of the user-guiding facilities of an
A D framework. Next generation elec-
tronic financial services will allow customers to add
individually designed derivatives to their portfolios in
real-time, even if the customer is not an expert in the
field.

5.2 Computer-Aided Training
Using CDC as flexible electronic learning mate-
rials, interactive and feedback-driven training lessons
help to improve knowledge about derivatives in
shorter periods of time when compared to tradi-
tional training methods6. By interactively composing
derivative contracts based on the company’s compo-
nent repository, employees are able to participate in
learning lessons according to their individual learning
habits instead of being forced to follow predetermined
learning paths. In-house training lessons may substi-
tute expensive third party offerings.

5.3 Smart Contract Repositories
After introducing a CDC based approach, the
company’s repository grows with every new con-
tract, accumulating knowledge and therefore being
a valuable asset. Before CDC, there were just
mathematical formulae, possibly enriched with meta-
data, often using some kind of free-form markup.
CDC introduce structural information above the
pure implementation description based on plain for-
mulae, making each contract a queryable entity by us-
ing specialised languages, e.g. "List all contracts hav-
ing a stop loss of X and smoothing".

6 Conclusions
A D technology combined with a
component-oriented pricing engine provides the tools
necessary to tackle the increasing design demands of
current and future contract design workflows. Being

5Currently, the customer is billed (in)directly for the design
process carried out by a financial engineer, making an arbitrary
number of iteration steps illusory.

6CDC could provide services which are comparable to
but more flexible than those of Minerva.

highly interactive, an explorative and feedback-driven
design process, both the financial engineer and the
non-expert customer may profit from, becomes real-
ity. The increased level of abstraction allows for en-
hanced supportive technologies that help to decrease
the overall design time and reduce or even avoid po-
tential errors or problems by shifting them towards
very early stages of the design process. The tradition-
ally strictly separated entities Factsheet and Imple-
mentation are unified by this approach, leading to in-
creased knowledge reuse, financial engineers as well
as customers may benefit from.

References:

[1] Box, D.: Essential COM. Addison Wesley Pub-
lishing Company Incorporated. 1999

[2] Apple Computers Inc.: Inside Macintosh: Open-
Doc Programmer’s Guide. Addison Wesley Pub-
lishing Company Incorporated. 1996

[3] Reitz, M. & Stenzel, C.: Minerva: A component-
based framework for Active Documents. Pro-
ceedings of the Software Composition Workshop
(SC 2004). ENTCS 114. Elsevier. 2005

[4] EASYCOMP (IST Project 1999-14191). Easy
Composition in Future Generation Component
Systems. http://www.easycomp.org

[5] Korn, R. & Korn, E.: Option Pricing and Portfo-
lio Optimization. AMS. Rhode Island. 2001

[6] Müller, S.: Multi-Dimensional Trees for Op-
tion Valuation. Diploma Thesis. University of
Kaiserslautern. March 2006

[7] He, H.: Convergence from Discrete to Contin-
uous-Time Contingent Claim Prices. Working
Paper, University of California, Berkeley

[8] Black, F. & Scholes, M.: The pricing of op-
tions and corporate liabilities. Journal of Polit-
ical Economy, 81, 637–659. 1973

[9] Merton, R.: The theory of rational option pric-
ing. Bell Journal of Economics and Management
Science, 4, 141–183. 1973

[10] Nögel, U. & Mikhailov, S.: Heston’s stochas-
tic volatility model. Implementation, calibration
and some extensions. WILMOTT Magazine, 74–
79. July 2003

[11] Nögel, U.: Option Pricing using Stochastic
Volatility Models. Progress in Industrial Math-
ematics at ECMI 2002. Springer Verlag. Heidel-
berg. 2004

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Business & Economics, Cavtat, Croatia, June 13-15, 2006 (pp13-18)

